Efficient Implementation of sparse matrix — sparse
vector multiplication for large scale graph analytics

Mauricio J. Serrano

© 2017 IBM Corporation

* Naive algorithms have poor memory access patterns...
not cache friendly.
" Prior work (references 1 and 2):
—SpMV/SpMSpV addresses memory latency by splitting
y=Ax Into two phases:

*Phase 1: Scaling phase A’ =S (A, x) using a temporary
matrix
*Phase 2: Reduction phase y=R (A’)

*This is more cache/memory friendly , in spite of the extra
work/memory needed.

" Prior papers:
1. D. Buono et al, “Optimizing sparse matrix-vector

multiplication for large scale analytics”, ICS 2016,
Presented results for IBM POWERS, best algorithm for

SpMV.
22. A. Azad, A. Buluc, “A work-efficient parallel sparse

2017 IBM Corporation

Our algorithm B

Input vector X

Phase 2

>
CSC matrix A Thread bins Global bins output Y

iuu
it
L0l

© 2017 IBM Corporation

We present a new approach for SpMSpV y=Ax
*Phase 1: A’ = S(A,x)
—Each thread scans a portion of the input vector x
—Each thread maintains a collection of small fixed capacity

bins (or buckets)

*Each bucket captures accesses to a limited portion of the output
vector vy

—Each thread obtains [row, product=weight * x[col]]
where weight is obtained from the CSC representation of
the matrix

—Each thread performs bucket =
row/number of rows per bucket

—Each thread deposits [row, product] In the corresponding
bin (or bucket)

A bucket counter is incremented for each operation.

—When the small fixed capacity bucket is full, contents
4 transferred to a global bucket

has two sockets).

Input vector X

CSC matrix

oO—~0O X OO0 W

-~ 0O X OO0 W

Global bins

............

output Y

© 2017 IBM Corporation

Numa strategy for very sparse input vectors

Input vector X

Thread bins

l.ﬁ..i i

socket0 socket1

6 © 2017 IBM Corporation

When to Choose SpMV instead of SpMSpV EEERS

»SpMYV can be performed more efficiently by Buono et. al
algorithm, because bucket information can be
precomputed (input vector is dense),

—no need for a runtime bucket technique.

*"|[n some cases it is more efficient to perform SpMSpV as
SpMV, in spite of the extra work needed to convert
input/output vectors from sparse/dense and viceversa.

= We used the heuristic shown below: estimate the number
of nonzeros that the operation will involve

Our re 01 Procedure SpMV (M, X) : € SpMV
02 nnz(X,M) = 0;
03 for every nonzero position i in vector X
04 nnz (X,M) += edgePtr[i+l] - edgePtr[i]
05 if ((nnz(X,M) / nnz (M)) > threshold)
06 use SpMV instead of SpMSpV

Fig. 5. Choosing SpMV based on nonzero density

7 © 2017 1BM Corporation

®

Optimal Thread Bin Size
= If bucket is too small, frequent transfers to global bin increase
synchronization overhead
» If bucket is too large: cache footprint exceeds L3 cache size
» Optimal size found to be 256 bytes for RMAT 28.8

— Bucket counter can be a single byte
Effect of thread bin size for RMAT.28.8 (6404 bins, 20

cores)
2.5 \
\

\

5 2
AN
Hs
/I—_.
\,____\//

1024 2048

64 128 256 512

bin size in bytes
© 2017 IBM Corporation

0.5
16 32

= Qur results show from 2x to 5x better performance than
COMBLAS and GRAPHMAT when used with an AC922

~ | |

tw ' .
Time in SpMSpV rmat.28.8
32
\ eoUrs
16
-B-graphmat

< 8 -4-comblas
e
c 4
o
n 2
d
s 1

0.5 B
0.25

2 4 8 16 32 64
Number of cores, 40 cores uses two sockets

9 BM Corporation

— — — v —

10

32

16

w O 5 0 o 0O wnv

0.5

0.25

Time in SpMSpV twitter

~-0ours

-#-graphmat
--comblas

"

4 8 16 32
Number of cores, 40 cores uses two sockets

64

© 2017 IBM Corporation

=Questions ?

=Thank You !

11 © 2017 IBM Corporation

Naive CSR algorithm E=

| |
Algorithm 1: Sequential CSR Algorithm. |

Input: A = (rowstart, colidx,val): n x n CSR matrix;
x: 1nput vector.

Output: b: output vector, initialized to 0.

for i+ 0ton—1do

for j + rowstart[i] to rowstart[i + 1] — 1 do
k + colidx[j];

L bli] < bli] + (val|j] = x|k]);

I N I

12 © 2017 IBM Corporation

	Slide Number 1
	Slide Number 2
	Our algorithm
	We present a new approach for SpMSpV y=Ax
	NUMA strategy for significant number of non-zeros (example has two sockets).
	Numa strategy for very sparse input vectors
	When to Choose SpMV instead of SpMSpV
	Optimal Thread Bin Size
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Naïve CSR algorithm

