
© 2017 IBM Corporation1

Efficient Implementation of sparse matrix – sparse
vector multiplication for large scale graph analytics

Mauricio J. Serrano

© 2017 IBM Corporation2

Naïve algorithms have poor memory access patterns…
not cache friendly.
Prior work (references 1 and 2):

–SpMV/SpMSpV addresses memory latency by splitting
y=Ax into two phases:

•Phase 1: Scaling phase A’=S(A,x) using a temporary
matrix
•Phase 2: Reduction phase y=R(A’)
•This is more cache/memory friendly , in spite of the extra
work/memory needed.

Prior papers:
1. D. Buono et al, “Optimizing sparse matrix-vector

multiplication for large scale analytics”, ICS 2016,
Presented results for IBM POWER8, best algorithm for
SpMV.

2. A. Azad, A. Buluc, “A work-efficient parallel sparse

© 2017 IBM Corporation3

Thread bins Global bins

Input vector X

CSC matrix A output Y

Phase 2

Our algorithm

© 2017 IBM Corporation4

We present a new approach for SpMSpV y=Ax
Phase 1: A’ = S(A,x)

–Each thread scans a portion of the input vector x
–Each thread maintains a collection of small fixed capacity

bins (or buckets)
•Each bucket captures accesses to a limited portion of the output
vector y

–Each thread obtains [row,product=weight * x[col]]
where weight is obtained from the CSC representation of
the matrix

–Each thread performs bucket =
row/number_of_rows_per_bucket

–Each thread deposits [row,product] in the corresponding
bin (or bucket)

• A bucket counter is incremented for each operation.
–When the small fixed capacity bucket is full, contents

transferred to a global bucket

© 2017 IBM Corporation5

NUMA strategy for significant number of non-zeros (example
has two sockets).

Thread bins Global bins

Input vector X

CSC matrix A output Y
S
o
c
k
e
t
0

S
o
c
k
e
t
1

© 2017 IBM Corporation6

Numa strategy for very sparse input vectors

Thread bins Global bins

Input vector X

CSC matrix A output Y

socket0 socket1

© 2017 IBM Corporation7

When to Choose SpMV instead of SpMSpV

SpMV can be performed more efficiently by Buono et. al
algorithm, because bucket information can be
precomputed (input vector is dense),
–no need for a runtime bucket technique.

 In some cases it is more efficient to perform SpMSpV as
SpMV, in spite of the extra work needed to convert
input/output vectors from sparse/dense and viceversa.
We used the heuristic shown below: estimate the number

of nonzeros that the operation will involve
–Our results shown that above 50% it is better to use SpMV.

© 2017 IBM Corporation8

Optimal Thread Bin Size
 If bucket is too small, frequent transfers to global bin increase

synchronization overhead
 If bucket is too large: cache footprint exceeds L3 cache size
 Optimal size found to be 256 bytes for RMAT 28.8

– Bucket counter can be a single byte

© 2017 IBM Corporation9

Our results show from 2x to 5x better performance than
COMBLAS and GRAPHMAT when used with an AC922
two socket POWER9 machine:

© 2017 IBM Corporation10

© 2017 IBM Corporation11

Questions ?

Thank You !

© 2017 IBM Corporation12

Naïve CSR algorithm

	Slide Number 1
	Slide Number 2
	Our algorithm
	We present a new approach for SpMSpV y=Ax
	NUMA strategy for significant number of non-zeros (example has two sockets).
	Numa strategy for very sparse input vectors
	When to Choose SpMV instead of SpMSpV
	Optimal Thread Bin Size
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Naïve CSR algorithm

