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Motivation
 Increasing high computation demand

 Increasing Complexity due to multiple heterogeneous 
components in a system

 Heterogeneous systems are not optimized always for a set of 
applications

 An optimal communication among processing components is 
missing

 Parallelization required for some applications for performance 
increase
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Motivation

 Approach:
 Define a quality/tolerance factor for each component/task in the 

system
 Reformulate original optimization problem
 Provide an architecture that will enforce a high-level of reliability with 

minimum redundancy
 Provide methods to optimize architectural resources at run-time 



DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Motivation

 Approach – Problem Reformulation
 Many problems are defined as on-line optimization problem, with the 

goal of producing a optimal output under environmental constraints
 Reformulate the problem as the production of the closest output 

under the same environmental constraints.
 Use current solver to devise an online solution
 However, provide a combined time-space redundancy that will 

improve the quality of results and keep the output close to the 
optimal result

 Use of reconfiguration logic, with extreme flexibility an performance 
to organize this work.

 Embedded Optimization to enforce rules at run-time
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Figure 1: Target system architecture Figure 2: Overall Design Flow

Figure 3: Communication Topologies
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MPSoC Exploration Design Flow
Input: Parallel programs and sequential programs, real-
time constraints, platform components

• Intermediate representation of programs 
for performance profiling

• Cost optimization and architecture exploration

• Transforming of an Abstract Specification into a
Platform-dependent Concrete Specification
(e.g.: Platform Xilinx ML310, CPU  PowerPC,
Memory  BRAM, CommMedium  PLB,...)

• Generation of the platform-dependent hardware 
description files (Concrete Component Description)

Output: FPGA configuration file

• The Concrete Specification can also be the result of the architectural synthesis

Figure 5: MeXT Design Flow
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Semi-Automatic System Generation

Figure 6: A Semi-Automatic System Generation Design Flow
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Architecture Synthesis - Scope

• Modeling goal:
• Allow selection of the best configuration (application-specific)
 Enable (runtime) optimization

• Lead to (automatic) generation of HW infrastructure
 Cost models of HW components
 System model/description (PEs, networks, mapping, …)
 SW configuration
 Synthesis and device configuration

• Approach:
• Synthesize an application-specific optimum system from parallel 

programs (high-level synthesis) using ILP
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Architecture Synthesis - Problems

Comm. Networks:

Parallel Program:

Problem: Simultaneous Task-
Mapping and Selection of 
Resources

Processors:
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MPSoC Design Objectives

 Construct an implementation with the desired functionality

 More challenging: simultaneously optimize numerous design 
metrics

 Metrics
 Unit cost, NRE
 Size, Power, a Weight
 Performance
 Flexibility, maintainability
 Time-to-market, time-to-prototype
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ILP Model
Map all tasks

Max # tasks per PE

Max. usable FPGA area for PEs

Switching time for all tasks
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ILP Model
Maximum Number of processes using a 
communication topology

Area Cost of Communication Network

Total Area Cost
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ILP Model
Computation Time Cost for network topology

Total Computation Time Cost
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SocMPI

 Embedded Systems lack an efficient Message Passing 
Interface (MPI) communication library

 SocMPI - on-Chip Communication library
 Compatible with a subset of the MPI Standard
 Hardware supported MPI functions (BCast, WTime)
 Configurable (MPI functions and networks)
 Memory requirements: 11 - 16 KByte
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SocMPI
 Two Layers: network dependent and network independent 
 Currently supported : Direct Link, Star, Bus and Ring topology
 Easily extendable to other networks

Figure 7: Layers of SoC-MPI
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Case Study 1: Mandelbrot Fractal
• Parallel implementation of 

Mandelbrot is used to analyze 
for generating profile.

• Three MPI tasks were allowed
• FSL direct-link, PLB bus and 

FSL-based bus used 
for exploration

• Simplified architecture is 
suggested in figure

• Table I shows parameter for 
available networks

Figure 8: Simplified System
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Case Study 2: WLAN 802.11g
• Parallel implementation of 

signal processing chain for IEEE 
802.11g WLAN is used to 
analyze for generating profile.

• DAG shows 
communication pattern, task 
deadline and execution time

• Optimization is performed 
using MeXT and scheduling is 
analyzed

• Figure shows the 
resulting system architecture

Figure 9: DAG of the program and task deadlines

Figure 10: Architecture for WLAN program
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Summary

 Design Systems Able to Cope with Probabilistic Behavior

 Framework for MPSoC Design Exploration

 Optimization for suitable Design

 Message Passing protocol for SoC-MPI



DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Future Work: Security and 
Resiliency Integration
 Secured Execution of Hardware/Software Threads in System 

on Chips

 Extending separation kernel policies within hardware 
components, and

 Enforcing corresponding access decision rules directly in 
hardware
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Future Work: The Flask Security 
Architecture Model

Figure 11: Flask Security Architecture with Hardware 
Management Module (HMM)
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PinHaT (Plattform-independent 
Hardware Generation Tool)
 Funded By The German Research Foundation (DFG) 2005 -

2010
 Simplify the Design of MPSoCs
 Vendor independent framework based on Java and XML
 Abstract System Specification   Platform-dependent  description 

files
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Security and Resiliency Integration

Configure Component
Interface Integration

Security/Reliability Extension
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Security and Resiliency Integration

 The following extension has been added with 
PinHat

 Abstract security components (Hardware 
Sandbox and HMM) can be added now with 
existing abstract component input.

 While adding concrete component input, 
security components specification (e.g. size of 
HMM Access Vector Cache, I/O etc.) can be 
added. 

 The communication interface between security 
components and bus can be specified
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