
DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

DEPARTMENT OR UNIT
NAME. DELETE FROM
MASTER SLIDE IF N/A

Department of Electrical & Computer
Engineering

MeXT: A Flow for
Multiprocessor Exploration
Christophe Bobda, Harold Ishebabi, Philipp Mahr,

Joel Mandebi Mbongue and Sujan Kumar Saha

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Agenda

 Motivation

 The MeXT Design Flow

 MPI for Embedded Multiprocessor Systems

 Case Study

 Summary

 Future Work: Security and Reliability Extension

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Motivation
 Increasing high computation demand

 Increasing Complexity due to multiple heterogeneous
components in a system

 Heterogeneous systems are not optimized always for a set of
applications

 An optimal communication among processing components is
missing

 Parallelization required for some applications for performance
increase

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Motivation

 Approach:
 Define a quality/tolerance factor for each component/task in the

system
 Reformulate original optimization problem
 Provide an architecture that will enforce a high-level of reliability with

minimum redundancy
 Provide methods to optimize architectural resources at run-time

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Motivation

 Approach – Problem Reformulation
 Many problems are defined as on-line optimization problem, with the

goal of producing a optimal output under environmental constraints
 Reformulate the problem as the production of the closest output

under the same environmental constraints.
 Use current solver to devise an online solution
 However, provide a combined time-space redundancy that will

improve the quality of results and keep the output close to the
optimal result

 Use of reconfiguration logic, with extreme flexibility an performance
to organize this work.

 Embedded Optimization to enforce rules at run-time

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Target System
CPU
Type

1

CPU
Type

1

CPU
Type

1

CPU
Type

2

CPU
Type

2

CPU
Type

2

CPU
Type

3

CPU
Type

3

Mem./
Cache

Mem./
Cache

Mem./
Cache

Mem./
Cache

Mem./
Cache

Mem./
Cache

Mem./
Cache

CPU
Type

3
Mem./
Cache

Mem./
Cache

Interconnects

Interconnects

In
te

rc
on

ne
ct

s

Ext.
Memory

Mem./
Cache

Mem./
Cache

Mem./
Cache

Specification
and Characterization

of Applications

Selection of
Target Architectures

Architectural
Templates

Implementation
of Error Resilience

Mechanisms

P P

P P

PS
N

direct
link

packet
switching
net

PSN = packet switching node
(router)
P = processor

P

P

P

P

FT
M

FTM = fault tolerant node manager
P = Processor

P1 P2

P3 P4

FU
re-location

Figure 1: Target system architecture Figure 2: Overall Design Flow

Figure 3: Communication Topologies

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Target System

Processor

Program
memory

Bitstream
memory

Data
memory

…

Bin
1

Bin
2

Bin
k

HA
Interface

Bus

HA
1

HA
2

HA
k

Software
Tasks

Peripheral
Peripheral

Figure 4: SoC Architecture with Hardware Accelerators

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

MPSoC Exploration Design Flow
Input: Parallel programs and sequential programs, real-
time constraints, platform components

• Intermediate representation of programs
for performance profiling

• Cost optimization and architecture exploration

• Transforming of an Abstract Specification into a
Platform-dependent Concrete Specification
(e.g.: Platform Xilinx ML310, CPU  PowerPC,
Memory  BRAM, CommMedium  PLB,...)

• Generation of the platform-dependent hardware
description files (Concrete Component Description)

Output: FPGA configuration file

• The Concrete Specification can also be the result of the architectural synthesis

Figure 5: MeXT Design Flow

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Semi-Automatic System Generation

Figure 6: A Semi-Automatic System Generation Design Flow

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Architecture Synthesis - Scope

• Modeling goal:
• Allow selection of the best configuration (application-specific)
 Enable (runtime) optimization

• Lead to (automatic) generation of HW infrastructure
 Cost models of HW components
 System model/description (PEs, networks, mapping, …)
 SW configuration
 Synthesis and device configuration

• Approach:
• Synthesize an application-specific optimum system from parallel

programs (high-level synthesis) using ILP

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Architecture Synthesis - Problems

Comm. Networks:

Parallel Program:

Problem: Simultaneous Task-
Mapping and Selection of
Resources

Processors:

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

MPSoC Design Objectives

 Construct an implementation with the desired functionality

 More challenging: simultaneously optimize numerous design
metrics

 Metrics
 Unit cost, NRE
 Size, Power, a Weight
 Performance
 Flexibility, maintainability
 Time-to-market, time-to-prototype

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

ILP Model
Map all tasks

Max # tasks per PE

Max. usable FPGA area for PEs

Switching time for all tasks

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

ILP Model
Maximum Number of processes using a
communication topology

Area Cost of Communication Network

Total Area Cost

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

ILP Model
Computation Time Cost for network topology

Total Computation Time Cost

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

SocMPI

 Embedded Systems lack an efficient Message Passing
Interface (MPI) communication library

 SocMPI - on-Chip Communication library
 Compatible with a subset of the MPI Standard
 Hardware supported MPI functions (BCast, WTime)
 Configurable (MPI functions and networks)
 Memory requirements: 11 - 16 KByte

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

SocMPI
 Two Layers: network dependent and network independent
 Currently supported : Direct Link, Star, Bus and Ring topology
 Easily extendable to other networks

Figure 7: Layers of SoC-MPI

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Case Study 1: Mandelbrot Fractal
• Parallel implementation of

Mandelbrot is used to analyze
for generating profile.

• Three MPI tasks were allowed
• FSL direct-link, PLB bus and

FSL-based bus used
for exploration

• Simplified architecture is
suggested in figure

• Table I shows parameter for
available networks

Figure 8: Simplified System

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Case Study 2: WLAN 802.11g
• Parallel implementation of

signal processing chain for IEEE
802.11g WLAN is used to
analyze for generating profile.

• DAG shows
communication pattern, task
deadline and execution time

• Optimization is performed
using MeXT and scheduling is
analyzed

• Figure shows the
resulting system architecture

Figure 9: DAG of the program and task deadlines

Figure 10: Architecture for WLAN program

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Summary

 Design Systems Able to Cope with Probabilistic Behavior

 Framework for MPSoC Design Exploration

 Optimization for suitable Design

 Message Passing protocol for SoC-MPI

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Future Work: Security and
Resiliency Integration
 Secured Execution of Hardware/Software Threads in System

on Chips

 Extending separation kernel policies within hardware
components, and

 Enforcing corresponding access decision rules directly in
hardware

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Future Work: The Flask Security
Architecture Model

Figure 11: Flask Security Architecture with Hardware
Management Module (HMM)

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

PinHaT (Plattform-independent
Hardware Generation Tool)
 Funded By The German Research Foundation (DFG) 2005 -

2010
 Simplify the Design of MPSoCs
 Vendor independent framework based on Java and XML
 Abstract System Specification  Platform-dependent description

files

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Security and Resiliency Integration

Configure Component
Interface Integration

Security/Reliability Extension

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Security and Resiliency Integration

 The following extension has been added with
PinHat

 Abstract security components (Hardware
Sandbox and HMM) can be added now with
existing abstract component input.

 While adding concrete component input,
security components specification (e.g. size of
HMM Access Vector Cache, I/O etc.) can be
added.

 The communication interface between security
components and bus can be specified

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

smartsystems.ece.ufl.edu

	MeXT: A Flow for Multiprocessor Exploration
	Agenda
	Motivation
	Motivation
	Motivation
	Target System
	Target System
	MPSoC Exploration Design Flow
	Semi-Automatic System Generation
	Architecture Synthesis - Scope
	Architecture Synthesis - Problems
	MPSoC Design Objectives
	ILP Model
	ILP Model
	ILP Model
	SocMPI
	SocMPI
	Case Study 1: Mandelbrot Fractal
	Case Study 2: WLAN 802.11g
	Summary
	Future Work: Security and Resiliency Integration
	Future Work: The Flask Security Architecture Model
	PinHaT (Plattform-independent Hardware Generation Tool)�
	Security and Resiliency Integration
	Security and Resiliency Integration
	Slide Number 26

