
DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

DEPARTMENT OR UNIT
NAME. DELETE FROM
MASTER SLIDE IF N/A

Department of Electrical & Computer
Engineering

MeXT: A Flow for
Multiprocessor Exploration
Christophe Bobda, Harold Ishebabi, Philipp Mahr,

Joel Mandebi Mbongue and Sujan Kumar Saha

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Agenda

 Motivation

 The MeXT Design Flow

 MPI for Embedded Multiprocessor Systems

 Case Study

 Summary

 Future Work: Security and Reliability Extension

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Motivation
 Increasing high computation demand

 Increasing Complexity due to multiple heterogeneous
components in a system

 Heterogeneous systems are not optimized always for a set of
applications

 An optimal communication among processing components is
missing

 Parallelization required for some applications for performance
increase

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Motivation

 Approach:
 Define a quality/tolerance factor for each component/task in the

system
 Reformulate original optimization problem
 Provide an architecture that will enforce a high-level of reliability with

minimum redundancy
 Provide methods to optimize architectural resources at run-time

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Motivation

 Approach – Problem Reformulation
 Many problems are defined as on-line optimization problem, with the

goal of producing a optimal output under environmental constraints
 Reformulate the problem as the production of the closest output

under the same environmental constraints.
 Use current solver to devise an online solution
 However, provide a combined time-space redundancy that will

improve the quality of results and keep the output close to the
optimal result

 Use of reconfiguration logic, with extreme flexibility an performance
to organize this work.

 Embedded Optimization to enforce rules at run-time

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Target System
CPU
Type

1

CPU
Type

1

CPU
Type

1

CPU
Type

2

CPU
Type

2

CPU
Type

2

CPU
Type

3

CPU
Type

3

Mem./
Cache

Mem./
Cache

Mem./
Cache

Mem./
Cache

Mem./
Cache

Mem./
Cache

Mem./
Cache

CPU
Type

3
Mem./
Cache

Mem./
Cache

Interconnects

Interconnects

In
te

rc
on

ne
ct

s

Ext.
Memory

Mem./
Cache

Mem./
Cache

Mem./
Cache

Specification
and Characterization

of Applications

Selection of
Target Architectures

Architectural
Templates

Implementation
of Error Resilience

Mechanisms

P P

P P

PS
N

direct
link

packet
switching
net

PSN = packet switching node
(router)
P = processor

P

P

P

P

FT
M

FTM = fault tolerant node manager
P = Processor

P1 P2

P3 P4

FU
re-location

Figure 1: Target system architecture Figure 2: Overall Design Flow

Figure 3: Communication Topologies

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Target System

Processor

Program
memory

Bitstream
memory

Data
memory

…

Bin
1

Bin
2

Bin
k

HA
Interface

Bus

HA
1

HA
2

HA
k

Software
Tasks

Peripheral
Peripheral

Figure 4: SoC Architecture with Hardware Accelerators

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

MPSoC Exploration Design Flow
Input: Parallel programs and sequential programs, real-
time constraints, platform components

• Intermediate representation of programs
for performance profiling

• Cost optimization and architecture exploration

• Transforming of an Abstract Specification into a
Platform-dependent Concrete Specification
(e.g.: Platform Xilinx ML310, CPU PowerPC,
Memory BRAM, CommMedium PLB,...)

• Generation of the platform-dependent hardware
description files (Concrete Component Description)

Output: FPGA configuration file

• The Concrete Specification can also be the result of the architectural synthesis

Figure 5: MeXT Design Flow

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Semi-Automatic System Generation

Figure 6: A Semi-Automatic System Generation Design Flow

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Architecture Synthesis - Scope

• Modeling goal:
• Allow selection of the best configuration (application-specific)
 Enable (runtime) optimization

• Lead to (automatic) generation of HW infrastructure
 Cost models of HW components
 System model/description (PEs, networks, mapping, …)
 SW configuration
 Synthesis and device configuration

• Approach:
• Synthesize an application-specific optimum system from parallel

programs (high-level synthesis) using ILP

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Architecture Synthesis - Problems

Comm. Networks:

Parallel Program:

Problem: Simultaneous Task-
Mapping and Selection of
Resources

Processors:

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

MPSoC Design Objectives

 Construct an implementation with the desired functionality

 More challenging: simultaneously optimize numerous design
metrics

 Metrics
 Unit cost, NRE
 Size, Power, a Weight
 Performance
 Flexibility, maintainability
 Time-to-market, time-to-prototype

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

ILP Model
Map all tasks

Max # tasks per PE

Max. usable FPGA area for PEs

Switching time for all tasks

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

ILP Model
Maximum Number of processes using a
communication topology

Area Cost of Communication Network

Total Area Cost

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

ILP Model
Computation Time Cost for network topology

Total Computation Time Cost

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

SocMPI

 Embedded Systems lack an efficient Message Passing
Interface (MPI) communication library

 SocMPI - on-Chip Communication library
 Compatible with a subset of the MPI Standard
 Hardware supported MPI functions (BCast, WTime)
 Configurable (MPI functions and networks)
 Memory requirements: 11 - 16 KByte

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

SocMPI
 Two Layers: network dependent and network independent
 Currently supported : Direct Link, Star, Bus and Ring topology
 Easily extendable to other networks

Figure 7: Layers of SoC-MPI

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Case Study 1: Mandelbrot Fractal
• Parallel implementation of

Mandelbrot is used to analyze
for generating profile.

• Three MPI tasks were allowed
• FSL direct-link, PLB bus and

FSL-based bus used
for exploration

• Simplified architecture is
suggested in figure

• Table I shows parameter for
available networks

Figure 8: Simplified System

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Case Study 2: WLAN 802.11g
• Parallel implementation of

signal processing chain for IEEE
802.11g WLAN is used to
analyze for generating profile.

• DAG shows
communication pattern, task
deadline and execution time

• Optimization is performed
using MeXT and scheduling is
analyzed

• Figure shows the
resulting system architecture

Figure 9: DAG of the program and task deadlines

Figure 10: Architecture for WLAN program

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Summary

 Design Systems Able to Cope with Probabilistic Behavior

 Framework for MPSoC Design Exploration

 Optimization for suitable Design

 Message Passing protocol for SoC-MPI

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Future Work: Security and
Resiliency Integration
 Secured Execution of Hardware/Software Threads in System

on Chips

 Extending separation kernel policies within hardware
components, and

 Enforcing corresponding access decision rules directly in
hardware

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Future Work: The Flask Security
Architecture Model

Figure 11: Flask Security Architecture with Hardware
Management Module (HMM)

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

PinHaT (Plattform-independent
Hardware Generation Tool)
 Funded By The German Research Foundation (DFG) 2005 -

2010
 Simplify the Design of MPSoCs
 Vendor independent framework based on Java and XML
 Abstract System Specification Platform-dependent description

files

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Security and Resiliency Integration

Configure Component
Interface Integration

Security/Reliability Extension

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Security and Resiliency Integration

 The following extension has been added with
PinHat

 Abstract security components (Hardware
Sandbox and HMM) can be added now with
existing abstract component input.

 While adding concrete component input,
security components specification (e.g. size of
HMM Access Vector Cache, I/O etc.) can be
added.

 The communication interface between security
components and bus can be specified

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

smartsystems.ece.ufl.edu

	MeXT: A Flow for Multiprocessor Exploration
	Agenda
	Motivation
	Motivation
	Motivation
	Target System
	Target System
	MPSoC Exploration Design Flow
	Semi-Automatic System Generation
	Architecture Synthesis - Scope
	Architecture Synthesis - Problems
	MPSoC Design Objectives
	ILP Model
	ILP Model
	ILP Model
	SocMPI
	SocMPI
	Case Study 1: Mandelbrot Fractal
	Case Study 2: WLAN 802.11g
	Summary
	Future Work: Security and Resiliency Integration
	Future Work: The Flask Security Architecture Model
	PinHaT (Plattform-independent Hardware Generation Tool)�
	Security and Resiliency Integration
	Security and Resiliency Integration
	Slide Number 26

