Singularity for Machine Learning Applications —
Analysis of Performance Impact

HPEC 2019

Bruce R. Jordan Jr., David Barrett, David Burke, Patrick Jardin,
Amelia Littrell, Paul Monticciolo, Michael Newey, Jean Piou, Kara Warner

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is

unlimited. I@ LINCOLN LABORATORY Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS

Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S.
This material is based upon work supported by the USD NON-LINE under Air MASSACHUSETTS INSTITUTE OF TECHNOLOGY Government rights in this work are defined by DFARS 252.227-7013 or DFARS

Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or 252.227-7014 as detailed above. Use of this work other than as specifically
recommendations expressed in this material are those of the author(s) and do authorized by the U.S. Government may violate any copyrights that exist in this
not necessarily reflect the views of the USD NON-LINE. work.

© 2019 Massachusetts Institute of Technology.

[E]

Agenda

> > Background
 Workload Descriptions

« Experimental Setup
* Results

« Conclusions

Singularity HPEC- 2
BRJ 2019-09-26

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

]@[Background

Reproducible results and mobility of compute is a common problem for software

In deep learning applications libraries and dependencies are often:
— Rapidly developed

— Tightly coupled

— Mutual exclusive with other libraries

« Containers seek to address these problems
— All libraries and dependencies are maintained with software

High Performance Computing (HPC) has unique security requirements
— The security posture of Docker often prevents its installation — containers run as root

Singularity HPEC- 3 LINCOLN LABORATORY

BRJ 2019-09-26 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

]@[Singularity vs. Docker

« Singularity designed with HPC in mind » Singularity deployed at*:
_ — Texas Advanced Computing Center
e Containers run as the user not as root — GSI Helmholtz Center for Heavy lon

Research
— Oak Ridge Leadership Computing Facility
— Purdue University

— This is different from Docker where the
containers run as root

— No possibility of privilege escalation from _ National Institutes of Health HPC
the container — UFIT Research Computing at the University
of Florida

« Singularity can execute containers built _ San Diego Supercomputing Center

by Docker — Lawrence Berkeley National Laboratory
— Singularity can also build containers — University of Chicago

— McGill HPC Centre/Calcul Québec

— Barcelona Supercomputing Center

— Sandia National Lab

— Argonne National Lab

{Singularity provides the capabilities of containerized software without the security risks of DockerJ

Singularity HPEC- 4 1. https://sylabs.io/guides/3.3/user-guide/installation.html#singularity-on-a-shared-resource LINCOLN LABORATORY

BRJ 2019-09-26 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

https://sylabs.io/guides/3.3/user-guide/installation.html#singularity-on-a-shared-resource

@ Agenda

« Background

> > Workload Descriptions
« Experimental Setup
* Results

« Conclusions

Singularity HPEC- 5 LINCOLN LABORATORY

BRJ 2019-09-26 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Workload Description

+ For deep learning there are two primary tasks: --

— Model Training — Determining the appropriate Total Layers
weights for the neural network

— Model Inference — Making predictions based on
given inputs

3x3 Convolutional Layers 8
Dense Layers

_ Dropout Layers 6
* For these experiments two Neural Networks are

tested
— Large Neural Network (LNN)
— Small Neural Network (SNN)

* Training is tested with GPU Acceleration
— Due to computational load training requires GPU

* Inference is tested.:
— Running on CPU Only
— Running with GPU Acceleration

Singularity HPEC- 6 LINCOLN LABORATORY

BRJ 2019-09-26 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

]@[Machine Learning Function Overview

Training Inference
The generation of the model where The usage of the trained model to predict
features are learned from the data the classes of the inputs
« Performed infrequently « Performed frequently
* Non-Realtime * Realtime
 High Computational Load « Moderate Computational Load

Training
Data

Training Network Inference Network with W

Singularity HPEC- 7 LINCOLN LABORATORY

BRJ 2019-09-26 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Agenda

« Background

 Workload Descriptions
> > Experimental Setup

* Results

« Conclusions

Singularity HPEC- 8 LINCOLN LABORATORY

BRJ 2019-09-26 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Experimental Steps

« Executed on the MIT LLSC! which is If necessary start the
representative of other HPC Centers ~ container with a
)) singularity shell
— Using the SLURM scheduler exclusive command
Ensure GPU
access to a node was used for all access is
experiments enabled

e The hardware used included

— Intel Xeon-E5 Processors © Rerun Inference
using same network

— NVIDIA K80 GPUs
« Steps 1-6 automated with bash script

« Each of the three workloads was run
100 times both within a container and

natively
Disable GPU

Singularity HPEC- 9 1. Lincoln Laboratory Supercomputing Center LINCOLN LABORATORY

BRJ 2019-09-26 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Training Detalls

GPUs used to accelerate the training time

— Training has extremely high computational load — CPU only
training would take too long

1526 Images used for training

— 256x256 pixels

— 2 Channels of grayscale data per image
— 5image classes within the data set

SNN — Used 50 Epochs with a batch size of 301 images
LNN — Used 300 Epochs with a batch size of 301 images

Singularity HPEC- 10
BRJ 2019-09-26

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Inference Detalls

using same network

 The network that was trained (either natively or within a

container) is used

« 145 images are presented and categorized into one of five

output classes

« By default the version of Tensorflow will use GPU

Accelerated functions

— For CPU Only inference the environment variable
CUDA VISIBLE DEVICES was set to the empty string

— When using CPU Only Tensorflow falls back to non-GPU

Accelerated functions

Singularity HPEC- 11
BRJ 2019-09-26

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Agenda

« Background
 Workload Descriptions
« Experimental Setup

> > Results

« Conclusions

Singularity HPEC- 12 LINCOLN LABORATORY

BRJ 2019-09-26 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Resource Utilization
Time

E

_ ° T|me trends are Consistent across

:

82.94 80.70 86.03 0.98 network sizes

110.34 108.44 112.95 085 +33.0% — Training takes longer within a container

17.60 17.03 18.46 0.29 . _ :

1416 13.64 1555 0.38 -24.4% — Inference is sped up within a container

15.07 1461 16.16 0.26 . .

1140 1098 1270 036 -195% ©* Inference speed up is consistent when
using CPU only or GPU Accelerated

579.93 569.39 590.17 5.19

760.52 753.06 77157 3.43 +31.1%

22.42 21.08 23.92 0.45

17.65 17.10 18.73 0.33 -25.6%

18.32 17.34 20.45 0.88

13.62 12.87 15.03 0.64 -21.2%

Using Singularity containers for inference operations improves runtime lengths J

)

Singularity HPEC- 13 LINCOLN LABORATORY

BRJ 2019-09-26 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

[E]

Resource Utilization
Main Memory

SNN

« Graph Detalils Uthaanios Over e

Blue shows Native Utilization s |
Orange shows Singularity Utilization i
Dark line is mean for each point

Shadow is STD for each point R R R R

Time (s)

GPU Inference Memaory

« Memory profile shapes are nearly identical | Setiraton Sver fime

—— Mative Mean Singularity Mean STD STD |

except they appear stretched or compressed /\U\
— This matches the time utilization e
« Appears to be slight overhead increase for J—

SlﬂgUIarlty durlng tralnlng 00 25 50 75 100 125 150 175

Time (s)

CPU Inference Memory
Utilization Over Time

21.5 :./\'\
élo / w/
Singularity containers do not appreciably impact 0] —
memory utilization T I

Main Memory GB Main Memory GB

Main Memory GB

LNN

Training Memory
Utilization Over Time
Singularity Mean STD STD |

5]
=
8
=

[=] = (] w '

0 100 200 300 400 500 600 700 800
Time (s)

GPU Inference Memaory
Utilization Over Time

4
3
2
l J
0 —--Nall\re Mean Singularity Mean STD STD
0 5 10 15 20
Time (s)

CPU Inference Memory
Utilization Over Time

[— Native Mean Singularity Mean STD |
2.0
15 |
\
10 b "
0.5
oo{

00 25 50 75 100 125 150 175 200
Time (s)

Singularity HPEC- 14

BRJ 2019-09-26

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Resource Utilization

GPU Memory

SNN
Trai_r)inglvideo Memory GPU Inference Video Memory g G rap h Detal IS
[Utlllza'tlon E:)vljrﬂme STD STD | 08 I Native Mean Ut”lziitr:;u?a:t)::era;nme sTD sTo | . =y .
I . — Blue shows Native Utilization
x : [4 — Orange shows Singularity Utilization
g / — Dark line is mean for each point
2 o fi £ 00) ;
” “ — Shadow is STD for each point
['} 2'0 40 Timeéns SD 1{50 0.0 25 50 ?.?rimeli[ls_tl} 125 150 175]]
5 * As with main memory the shapes are
nearly identical except scaled with time
LNN
Training Video Memory GPU Inference Video Memory
[Utiliza'tion ?V:era;rime sTD ST | [— Native Mean Utiliz‘:iiig(:lrict)yv:era:ime STD sTD |
E 30 é 30
% 10 % 10
- 0 100 200 360Tim4:i?51 500 600 700 800 - 0 5 II{T’ime o 15 20
{ Singularity containers do not appreciably impact video memory utilization J
Singularity HPEC- 15 LINCOLN LABORATORY

BRJ 2019-09-26 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

[E]

Accuracy Results

« Classification Accuracy not impacted by

the use of a Singularity Container

— Differences between Native or
Containerized are well within a single STD

SNN Accurac

Native Inference (GPU
Sing. Inference (GPU

Native Inference (CPU
Sing. Inference (CPU

Combined Mean

LNN Accurac

Native Inference (GPU
Sing. Inference (GPU

Native Inference (CPU
Sing. Inference (CPU

Combined Mean

89.3%
89.9%
89.3%
89.9%

70.9%
79.2%
70.9%
79.2%

5.1%
5.1%
5.1%
5.1%

33.4%
28.3%
33.4%
28.3%

-0.3%
+0.3%
-0.3%
+0.3%
89.9%

-5.5%
+5.5%
-5.5%
+5.5%
74.8%

Actual Class

Actual Class

Native Inference

Predicted Class

Native Inference

Predicted Class

Actual Class

LNN

Actual Class

Singularity Inference

o . .08 0.024 0.14 0.046

L 00017 0.0059

Predicted Class

Singularity Inference

Predicted Class

-0.8

0.6

0.4

0.2

0.0

-0.75

0.60

0.45

0.30

0.15

Singularity HPEC- 16
BRJ 2019-09-26

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Agenda

Background

Workload Descriptions

Experimental Setup

Results
DConclusions

Singularity HPEC- 17 LINCOLN LABORATORY

BRJ 2019-09-26 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

]@[Conclusions

Containers have a number of benefits for development and deployment of software
— Singularity in particular provides these benefits without the security implications of Docker

Singularity does not appreciably change the accuracy performance of Deep Learning
— Differences in performance can be attributed to the stochastic nature of Deep Learning

Singularity does not appreciably change Memory or GPU Utilization

Singularity impacts run time lengths differently depending on task

— For inference tasks Singularity improves run time performance by up to 25%
— For training tasks Singularity degrades run time performance by up to 33%
— More research is required to determine underlying reason for difference

Singularity is attractive for deploying containers on HPC or other locations where security
prevents the use of Docker

Singularity HPEC- 18 LINCOLN LABORATORY

BRJ 2019-09-26 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

