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• Reproducible results and mobility of compute is a common problem for software

• In deep learning applications libraries and dependencies are often:

– Rapidly developed

– Tightly coupled

– Mutual exclusive with other libraries

• Containers seek to address these problems 

– All libraries and dependencies are maintained with software

• High Performance Computing (HPC) has unique security requirements

– The security posture of Docker often prevents its installation – containers run as root 

Background
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• Singularity designed with HPC in mind

• Containers run as the user not as root

– This is different from Docker where the 
containers run as root

– No possibility of privilege escalation from 
the container

• Singularity can execute containers built 
by Docker

– Singularity can also build containers

Singularity vs. Docker

• Singularity deployed at1:
– Texas Advanced Computing Center

– GSI Helmholtz Center for Heavy Ion 
Research

– Oak Ridge Leadership Computing Facility

– Purdue University

– National Institutes of Health HPC

– UFIT Research Computing at the University 
of Florida

– San Diego Supercomputing Center

– Lawrence Berkeley National Laboratory

– University of Chicago

– McGill HPC Centre/Calcul Québec

– Barcelona Supercomputing Center

– Sandia National Lab

– Argonne National Lab

Singularity provides the capabilities of containerized software without the security risks of Docker 

1. https://sylabs.io/guides/3.3/user-guide/installation.html#singularity-on-a-shared-resource

https://sylabs.io/guides/3.3/user-guide/installation.html#singularity-on-a-shared-resource
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• For deep learning there are two primary tasks:

– Model Training – Determining the appropriate 
weights for the neural network

– Model Inference – Making predictions based on 
given inputs

• For these experiments two Neural Networks are 
tested

– Large Neural Network (LNN)

– Small Neural Network (SNN)

• Training is tested with GPU Acceleration

– Due to computational load training requires GPU

• Inference is tested: 

– Running on CPU Only 

– Running with GPU Acceleration

Workload Description

Parameter LNN SNN

Total Layers 28 10

3x3 Convolutional Layers 8 3

Dense Layers 4 2

Dropout Layers 6 2
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Training

The generation of the model where 
features are learned from the data

• Performed infrequently

• Non-Realtime

• High Computational Load

Machine Learning Function Overview

Inference

The usage of the trained model to predict 
the classes of the inputs

• Performed frequently

• Realtime

• Moderate Computational Load

Training 

Data

Training Network Inference Network with WW
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• Executed on the MIT LLSC1 which is 
representative of other HPC Centers

– Using the SLURM scheduler exclusive 
access to a node was used for all 
experiments

• The hardware used included

– Intel Xeon-E5 Processors

– NVIDIA K80 GPUs

• Steps 1-6 automated with bash script

• Each of the three workloads was run 
100 times both within a container and 
natively

Experimental Steps

1. Lincoln Laboratory Supercomputing Center

+

Ensure GPU 
access is 
enabled

Run Training

Run InferenceDisable GPU

Rerun Inference 
using same network 

as in 

1

2

34

5

3

If necessary start the 

container with a 
singularity shell

command

0
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• GPUs used to accelerate the training time

– Training has extremely high computational load – CPU only 
training would take too long

• 1526 Images used for training

– 256x256 pixels

– 2 Channels of grayscale data per image

– 5 image classes within the data set

• SNN – Used 50 Epochs with a batch size of 301 images

• LNN – Used 300 Epochs with a batch size of 301 images

Training Details
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• The network that was trained (either natively or within a 
container) is used

• 145 images are presented and categorized into one of five 
output classes

• By default the version of Tensorflow will use GPU 
Accelerated functions

– For CPU Only inference the environment variable 
CUDA_VISIBLE_DEVICES was set to the empty string

– When using CPU Only Tensorflow falls back to non-GPU 
Accelerated functions

Inference Details
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Mean Min Max STD Overhead

SNN Statistics

Native Training 82.94 80.70 86.03 0.98

Sing. Training 110.34 108.44 112.95 0.85 +33.0%

Native Inf. (GPU) 17.60 17.03 18.46 0.29

Sing. Inf. (GPU) 14.16 13.64 15.55 0.38 -24.4%

Native Inf. (CPU) 15.07 14.61 16.16 0.26

Sing. Inf. (CPU) 11.40 10.98 12.70 0.36 -19.5%

LNN Statistics

Native Training 579.93 569.39 590.17 5.19

Sing. Training 760.52 753.06 771.57 3.43 +31.1%

Native Inf. (GPU) 22.42 21.08 23.92 0.45

Sing. Inf. (GPU) 17.65 17.10 18.73 0.33 -25.6%

Native Inf. (CPU) 18.32 17.34 20.45 0.88

Sing. Inf. (CPU) 13.62 12.87 15.03 0.64 -21.2%

Using Singularity containers for inference operations improves runtime lengths

• Time trends are consistent across 
network sizes

– Training takes longer within a container 

– Inference is sped up within a container

• Inference speed up is consistent when 
using CPU only or GPU Accelerated

Resource Utilization
Time
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• Graph Details

– Blue shows Native Utilization

– Orange shows Singularity Utilization

– Dark line is mean for each point

– Shadow is STD for each point

• Memory profile shapes are nearly identical 
except they appear stretched or compressed

– This matches the time utilization

• Appears to be slight overhead increase for 
singularity during training

Resource Utilization
Main Memory

SNN LNN

Singularity containers do not appreciably impact 

memory utilization 
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• Graph Details

– Blue shows Native Utilization

– Orange shows Singularity Utilization

– Dark line is mean for each point

– Shadow is STD for each point

• As with main memory the shapes are 
nearly identical except scaled with time

Resource Utilization
GPU Memory

SNN

LNN

Singularity containers do not appreciably impact video memory utilization 
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• Classification Accuracy not impacted by 
the use of a Singularity Container

– Differences between Native or 
Containerized are well within a single STD

Accuracy Results

Mean Accuracy STD Difference

SNN Accuracy

Native Inference (GPU) 89.3% 5.1% -0.3%

Sing. Inference (GPU) 89.9% 5.1% +0.3%

Native Inference (CPU) 89.3% 5.1% -0.3%

Sing. Inference (CPU) 89.9% 5.1% +0.3%

Combined Mean 89.9%

LNN Accuracy

Native Inference (GPU) 70.9% 33.4% -5.5%

Sing. Inference (GPU) 79.2% 28.3% +5.5%

Native Inference (CPU) 70.9% 33.4% -5.5%

Sing. Inference (CPU) 79.2% 28.3% +5.5%

Combined Mean 74.8%

SNN

LNN
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• Containers have a number of benefits for development and deployment of software

– Singularity in particular provides these benefits without the security implications of Docker

• Singularity does not appreciably change the accuracy performance of Deep Learning

– Differences in performance can be attributed to the stochastic nature of Deep Learning

• Singularity does not appreciably change Memory or GPU Utilization

• Singularity impacts run time lengths differently depending on task

– For inference tasks Singularity improves run time performance by up to 25%

– For training tasks Singularity degrades run time performance by up to 33%

– More research is required to determine underlying reason for difference

Conclusions

Singularity is attractive for deploying containers on HPC or other locations where security 

prevents the use of Docker


