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]@[ Background

Reproducible results and mobility of compute is a common problem for software

In deep learning applications libraries and dependencies are often:
— Rapidly developed

— Tightly coupled

— Mutual exclusive with other libraries

« Containers seek to address these problems
— All libraries and dependencies are maintained with software

High Performance Computing (HPC) has unique security requirements
— The security posture of Docker often prevents its installation — containers run as root
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]@[ Singularity vs. Docker

« Singularity designed with HPC in mind » Singularity deployed at*:
_ — Texas Advanced Computing Center
e Containers run as the user not as root — GSI Helmholtz Center for Heavy lon

Research
— Oak Ridge Leadership Computing Facility
— Purdue University

— This is different from Docker where the
containers run as root

— No possibility of privilege escalation from _ National Institutes of Health HPC
the container — UFIT Research Computing at the University
of Florida

« Singularity can execute containers built _ San Diego Supercomputing Center

by Docker — Lawrence Berkeley National Laboratory
— Singularity can also build containers — University of Chicago

— McGill HPC Centre/Calcul Québec

— Barcelona Supercomputing Center

— Sandia National Lab

— Argonne National Lab

{Singularity provides the capabilities of containerized software without the security risks of DockerJ

Singularity HPEC- 4 1. https://sylabs.io/guides/3.3/user-guide/installation.html#singularity-on-a-shared-resource LINCOLN LABORATORY

BRJ 2019-09-26 MASSACHUSETTS INSTITUTE OF TECHNOLOGY



https://sylabs.io/guides/3.3/user-guide/installation.html#singularity-on-a-shared-resource

@ Agenda

« Background

> > Workload Descriptions
« Experimental Setup
* Results

« Conclusions

Singularity HPEC- 5 LINCOLN LABORATORY

BRJ 2019-09-26 MASSACHUSETTS INSTITUTE OF TECHNOLOGY



@ Workload Description

+ For deep learning there are two primary tasks: --

— Model Training — Determining the appropriate Total Layers
weights for the neural network

— Model Inference — Making predictions based on
given inputs

3x3 Convolutional Layers 8
Dense Layers

_ Dropout Layers 6
* For these experiments two Neural Networks are

tested
— Large Neural Network (LNN)
— Small Neural Network (SNN)

* Training is tested with GPU Acceleration
— Due to computational load training requires GPU

* Inference is tested.:
— Running on CPU Only
— Running with GPU Acceleration
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]@[ Machine Learning Function Overview

Training Inference
The generation of the model where The usage of the trained model to predict
features are learned from the data the classes of the inputs
« Performed infrequently « Performed frequently
* Non-Realtime * Realtime
 High Computational Load « Moderate Computational Load

Training
Data

Training Network Inference Network with W

Singularity HPEC- 7 LINCOLN LABORATORY

BRJ 2019-09-26 MASSACHUSETTS INSTITUTE OF TECHNOLOGY



@ Agenda

« Background

 Workload Descriptions
> > Experimental Setup

* Results

« Conclusions

Singularity HPEC- 8 LINCOLN LABORATORY

BRJ 2019-09-26 MASSACHUSETTS INSTITUTE OF TECHNOLOGY



@ Experimental Steps

« Executed on the MIT LLSC! which is If necessary start the
representative of other HPC Centers ~ container with a
) ) singularity shell
— Using the SLURM scheduler exclusive command
Ensure GPU
access to a node was used for all access is
experiments enabled

e The hardware used included

— Intel Xeon-E5 Processors © Rerun Inference
using same network

— NVIDIA K80 GPUs
« Steps 1-6 automated with bash script

« Each of the three workloads was run
100 times both within a container and

natively
Disable GPU
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@ Training Detalls

GPUs used to accelerate the training time

— Training has extremely high computational load — CPU only
training would take too long

1526 Images used for training

— 256x256 pixels

— 2 Channels of grayscale data per image
— 5image classes within the data set

SNN — Used 50 Epochs with a batch size of 301 images
LNN — Used 300 Epochs with a batch size of 301 images
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Inference Detalls

using same network

 The network that was trained (either natively or within a

container) is used

« 145 images are presented and categorized into one of five

output classes

« By default the version of Tensorflow will use GPU

Accelerated functions

— For CPU Only inference the environment variable
CUDA VISIBLE DEVICES was set to the empty string

— When using CPU Only Tensorflow falls back to non-GPU

Accelerated functions
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Resource Utilization
Time

E

_ ° T|me trends are Consistent across

:

82.94 80.70 86.03 0.98 network sizes

110.34 108.44 112.95 085  +33.0% — Training takes longer within a container

17.60 17.03 18.46 0.29 . _ :

1416 13.64 1555 0.38  -24.4% — Inference is sped up within a container

15.07 1461 16.16 0.26 . .

1140 1098 1270 036 -195% ©* Inference speed up is consistent when
using CPU only or GPU Accelerated

579.93 569.39 590.17 5.19

760.52 753.06 77157 3.43  +31.1%

22.42 21.08 23.92 0.45

17.65 17.10 18.73 0.33 -25.6%

18.32 17.34 20.45 0.88

13.62 12.87 15.03 0.64 -21.2%

Using Singularity containers for inference operations improves runtime lengths J

)
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Resource Utilization
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@ Resource Utilization

GPU Memory
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Accuracy Results

« Classification Accuracy not impacted by

the use of a Singularity Container

— Differences between Native or
Containerized are well within a single STD

SNN Accurac
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Sing. Inference (CPU

Combined Mean

LNN Accurac
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]@[ Conclusions

Containers have a number of benefits for development and deployment of software
— Singularity in particular provides these benefits without the security implications of Docker

Singularity does not appreciably change the accuracy performance of Deep Learning
— Differences in performance can be attributed to the stochastic nature of Deep Learning

Singularity does not appreciably change Memory or GPU Utilization

Singularity impacts run time lengths differently depending on task

— For inference tasks Singularity improves run time performance by up to 25%
— For training tasks Singularity degrades run time performance by up to 33%
— More research is required to determine underlying reason for difference

Singularity is attractive for deploying containers on HPC or other locations where security
prevents the use of Docker
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