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Motivation: Applying Theory

• Linear algebra is compute-intensive
• Mid-1990s and 2000s: Algorithmic analyses of 

randomized approximations for linear algebra
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Motivation: Hardware

• Can this benefit resource-constrained hardware?
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Motivation: Hardware

• Can this benefit resource-constrained hardware?

(Answer: Maybe.)
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Outline

1. Overview of approximate linear algebra
2. Evaluating some end-to-end sampling strategies
3. Predicting end-to-end error bounds

5



Outline

1. Overview of approximate linear algebra
2. Evaluating some end-to-end sampling strategies
3. Predicting end-to-end error bounds

6



Outline

1. Overview of approximate linear algebra
2. Evaluating some end-to-end sampling strategies
3. Predicting end-to-end error bounds

7



Outline

1. Overview of approximate linear algebra
2. Evaluating some end-to-end sampling strategies
3. Predicting end-to-end error bounds

8



Outline

1. Overview of approximate linear algebra
2. Evaluating some end-to-end sampling strategies
3. Predicting end-to-end error bounds

9



Randomized Approximations

• Low-rank approximations
• Frieze, Kannan and Vempala (1998, 2004)
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Randomized Approximations

• Low-rank approximations
• Frieze, Kannan and Vempala (1998, 2004)

• Matrix multiplication
• Singular value decomposition (SVD)
• Dimensionality reduction
• Linear regression
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Exact Matrix Multiplication
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Sampling for Matrix Multiplication
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Monte Carlo Matrix Multiplication
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• In general, for a custom sampling distribution, and 
c sampled column-row pairs, we construct C and R:



Theoretical Bounds
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“Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication” 
[Drineas et al. 2006]



Some steps before application…

• Asymptotic bounds
• What do the constant factors look like?

• Bounds on relative values
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Evaluation of Sampling Strategy
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Application: SLAM

• Simultaneous Localization and Mapping
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(Image: UPenn, Kumar Lab)



D-SLAM: Most Expensive Step

• D-SLAM: Evaluate on the distributed case
• Bottleneck: Computing covariance matrix (Σ)
• More robots = larger covariance matrix

(M = # of landmarks)
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N = # of robots
( D-SLAM )



D-SLAM: Position Error over Time
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20m

N = 25 point robots 
(random motion for T = 20 steps)

M = 20 landmarks 
(fixed)



D-SLAM: Position Error over Time
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D-SLAM: Per-Trial Position Error
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D-SLAM: Results

• Variance bad
• But acceptable for some spatial resolutions (~1m)
• e.g., formation of autonomous drones
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Application: Neural Networks

• Known: neural networks are resilient
• Two different networks on MNIST
• Fully-Connected
• CNN
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Neural Networks: Results
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Neural Networks: Results

• Works for certain sampling rates
• Different layers react differently
• Consistent with reliability studies
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Why Predict Error Bounds?

• Adaptive runtime control for sampling strategies
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Error Bounds in Practice

• Asymptotic < Asympotic Relative < Absolute
• Want to skip computation of product AB for bound
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D-SLAM: Bounds

• Too conservative (predicted error ~200%)
• Future work
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Neural Networks: Bounds
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Neural Networks: Bounds
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Future Work

• Other linear algebra approximations
• Fine-tuning adaptive control of approximation
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Conclusion

• Practical limitations to applying approximations…
• Errors cascade in larger systems
• Global stability

• …but randomized approximation appears promising
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