Multistart Methods for Quantum Approximate Optimization

Ruslan Shaydulin, Clemson University Ilya Safro, Clemson University Jeffrey Larson, Argonne National Lab

CHICAGO ARGONNE...

Outline

- Quick intro to Quantum Computing
- QAOA definition and the challenge of QAOA parameter optimization
- Our lst contribution multistart methods applied to QAOA
- Our 2nd contribution an extensive study of the performance of derivative-free methods for QAOA parameter optimization
- Our 3rd contribution extend previous results on QAOA parameter reusing

• The state of a qubit is a vector in two-dimensional complex vector space span by two basis states $|1\rangle\,, |0\rangle\,$:

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \alpha \begin{bmatrix} 1\\0 \end{bmatrix} + \beta \begin{bmatrix} 0\\1 \end{bmatrix}$$

- ullet If we measure a qubit, we get 0 with probability $|lpha|^2$ and 1 with probability $|eta|^2$
- The state of an two-qubit system:

$$|\psi\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle$$

• The state of a qubit is a vector in two-dimensional complex vector space span by two basis states $|1\rangle\,, |0\rangle\,$:

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \alpha \begin{bmatrix} 1\\0 \end{bmatrix} + \beta \begin{bmatrix} 0\\1 \end{bmatrix}$$

- ullet If we measure a qubit, we get 0 with probability $|lpha|^2$ and 1 with probability $|eta|^2$
- The state of an n-qubit system:
- Note that we need 2ⁿ complex numbers to describe an n-qubit system

Computation is performed by applying gates (unitary matrices):

$$H \equiv \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}; \quad R_z(\theta) \equiv e^{-i\theta\hat{\sigma}^z/2} = \begin{bmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{bmatrix}$$
$$|q_0\rangle - \boxed{H}$$
$$|q_1\rangle - \boxed{H}$$
$$|q_2\rangle - \boxed{H} - \boxed{R_z(\pi/2)} -$$

• Computation is performed by applying gates (unitary matrices):

$$H \equiv \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}; \quad R_z(\theta) \equiv e^{-i\theta\hat{\sigma}^z/2} = \begin{bmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{bmatrix}$$

$$H \equiv \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}; \quad R_z(\theta) \equiv e^{-i\theta\hat{\sigma}^z/2} = \begin{bmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{bmatrix}$$

$$H \equiv \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}; \quad R_z(\theta) \equiv e^{-i\theta\hat{\sigma}^z/2} = \begin{bmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{bmatrix}$$

Community Detection

Modularity maximization

- Also known as graph clustering
- Modularity is "the quality" of detected community structure in the network

Community Detection

Modularity maximization

 Modularity is "the number of edges falling within groups minus the expected number in an equivalent network with edges placed at random"

Formally:

Expected number of edges Actual number of edges

maximize
$$\frac{1}{4|E|} \sum_{ij} (A_{ij} - \frac{k_i k_j}{2m}) s_i s_j$$

subject to
$$s_i \in \{-1, +1\}$$

subject to $s_i \in \{-1, +1\}$ Community assignment of vertex i

where
$$k_i$$
 is degree of vertex $i, m = \frac{1}{2} \sum_{i} k_i$

A is an adjacency matrix of G

Combinatorial Optimization (CO) on a quantum computer in one slide

• Consider a CO problem on n variables:

$$\max_{s} \sum_{ij} B_{ij} s_i s_j + \sum_{i} h_i s_i, \qquad s_i \in \{-1, +1\}$$

- Notice that $\hat{\sigma}^z$ has eigenvalues -1, +1 with eigenvectors $|1\rangle$, $|0\rangle$
- We can construct the following 2ⁿx2ⁿ Hermitian matrix (Hamiltonian) such that its eigenvector (eigenstate) with the largest eigenvalue (energy) corresponds to the solution of the original problem:

$$\sum_{ij} B_{ij} \hat{\sigma}_i^z \hat{\sigma}_j^z + \sum_i h_i \hat{\sigma}_i^z$$

Combinatorial Optimization (CO) on a quantum computer in one slide

Consider a CO problem on n variables:

$$\max_{s} \sum_{ij} B_{ij} s_i s_j + \sum_{i} h_i s_i, \qquad s_i \in \{-1, +1\}$$

- Notice that $\hat{\sigma}^z$ has eigenvalues -1, +1 with eigenvectors $|1\rangle$, $|0\rangle$
- We can construct the following 2ⁿx2ⁿ Hermitian matrix (Hamiltonian) such that its eigenvector (eigenstate) with the largest eigenvalue (energy) corresponds to the solution of the original problem:

$$\sum_{ij} B_{ij} \hat{\sigma}_i^z \hat{\sigma}_j^z + \sum_i h_i \hat{\sigma}_i^z$$

Now all we have to do is prepare this eigenstate!

Quantum Approximate Optimization Algorithm (QAOA)

• QAOA prepares a parameterized "trial" (ansatz) state of the form:

$$|\psi(\boldsymbol{\theta})\rangle = |\psi(\boldsymbol{\beta}, \boldsymbol{\gamma})\rangle$$

$$= e^{-i\beta_p \hat{H}_M} e^{-i\gamma_p \hat{H}_C} \cdots e^{-i\beta_1 \hat{H}_M} e^{-i\gamma_1 \hat{H}_C} |+\rangle^{\otimes n}.$$

• Then a classical optimizer is used to vary the parameters $oldsymbol{eta}, oldsymbol{\gamma}$ to maximize:

$$f(\boldsymbol{\beta}, \boldsymbol{\gamma}) = \langle \psi(\boldsymbol{\beta}, \boldsymbol{\gamma}) | \hat{H}_C | \psi(\boldsymbol{\beta}, \boldsymbol{\gamma}) \rangle.$$

Quantum Approximate Optimization Algorithm (QAOA)

• QAOA prepares a parameterized "trial" (ansatz) state of the form:

$$|\psi(\boldsymbol{\theta})\rangle = |\psi(\boldsymbol{\beta}, \boldsymbol{\gamma})\rangle$$

$$= e^{-i\beta_p \hat{H}_M} e^{-i\gamma_p \hat{H}_C} \cdots e^{-i\beta_1 \hat{H}_M} e^{-i\gamma_1 \hat{H}_C} |+\rangle^{\otimes n}.$$

- Note that for $p \to \infty$ QAOA can *at least* exactly approximate adiabatic quantum evolution and can therefore find the exact optimal solution
- For small p, picture is more mixed, but there is some indication of the potential for quantum advantage

QAOA parameter optimization is hard

- The parameter space is highly nonconvex and contains many low-quality, nondegenerate local optima
- Local optimizers get stuck in local optima

$$f(\boldsymbol{\beta}, \boldsymbol{\gamma}) = \langle \psi(\boldsymbol{\beta}, \boldsymbol{\gamma}) | \hat{H}_C | \psi(\boldsymbol{\beta}, \boldsymbol{\gamma}) \rangle.$$

QAOA parameter optimization is hard

 The parameter space is highly nonconvex and contains many low-quality, nondegenerate local optima

 Local optimizers get stuck in local optima

$$f(\boldsymbol{\beta}, \boldsymbol{\gamma}) = \langle \psi(\boldsymbol{\beta}, \boldsymbol{\gamma}) | \hat{H}_C | \psi(\boldsymbol{\beta}, \boldsymbol{\gamma}) \rangle.$$

QAOA parameter optimization is hard

 The parameter space is highly nonconvex and contains many low-quality, nondegenerate loc optima

 Local optimizers get stuck in local optima

 Our solution: multistart methods

$$f(\boldsymbol{\beta}, \boldsymbol{\gamma}) = \langle \psi(\boldsymbol{\beta}, \boldsymbol{\gamma}) | \hat{H}_C | \psi(\boldsymbol{\beta}, \boldsymbol{\gamma}) \rangle.$$

Multistart methods (APOSMM)

- Traditional approach: start local methods from different initial parameters
- Problem with traditional approach: the same optimum might be identified by multiple local optimization runs, resulting in unnecessary function evaluations
- APOSSM:
 - Starts runs from the points that do not have a better point within an algorithmically controlled neighborhood
 - Considers both the initially sampled points as well as the points generated by an ensemble of local optimization runs
- Note that APOSSM still needs a local optimizer we choose BOBYQA as it performs best on our benchmarks

Multistart methods (APOSMM)

 APOSMM+BOBYQA identifies better optima with the same budget of function evaluations

Multistart methods (APOSMM)

 APOSMM+BOBYQA identifies better optima with the same budget of function evaluations

Benchmark

- Modularity maximization on six synthetic graphs with community structure: three instances of connected caveman graph and three instances of random partition graph.
- All graphs have between 10 and 12 vertices
- Compare with 6 state-of-the-art derivative-free optimization methods
- All methods are given a budget of 1,000 function evaluations
- Each problem instance is run from 10 different starting points

Note on the choice of the budget of function evaluations

- We follow the estimates in Guerreschi et al, Nature Scientific Reports 2019
- Assume 1 millisecond for one "shot" (measurement of the quantum system)
- Assume 1,000 measurements needed for obtaining the statistics to calculate the objective function value
- Running time:

(time per single measurement) \times (1,000 measurements per evaluation) \times (1,000 evaluations) \approx 16 min

 Note that the hardware is rapidly evolving, so it is impossible to project this numbers into the future with certainty

APOSMM vs no-restart local methods

 Set the tolerances of the local solvers to zero and allow them to run until convergence

APOSMM vs no-restart local methods

- Set the tolerances of the local solvers to zero and allow them to run until convergence
- However, here APOSMM may start another local optimization run after one has converged and local methods are not restarted

APOSMM vs naïve restart local methods

- Set the tolerances of local solvers to be the same across all seven methods
- If a local method converges before exhausting its budget of 1,000 function evaluations, it is restarted at a different random point

APOSMM vs naïve restart local methods

- For p=2, 4 the best-performing method (APOSMM+BOBYQA) solves only 60% and 40% of the problems, respectively
- These results indicate that even for a small number of QAOA steps, finding good variational parameters is hard under realistic time constraints

Is there hope?

Reusing Optimal QAOA parameters

- We estimate true optimal parameters restarting BOBYQA from random points until 100,000 function evaluations have been used
- This approach identifies multiple high-quality local optima
- We then use these high-quality QAOA parameters as initial guesses for local methods and APOSMM+BOBYQA for a graph where one edge is removed, simulating a realistic "dynamic network" scenario

Reusing Optimal QAOA parameters

- We estimate true optimal parameters restarting BOBYQA from random points until 100,000 function evaluations have been used
- This approach identifies multiple high-quality local optima
- We then use these high-quality QAOA parameters as initial guesses for local methods and APOSMM+BOBYQA for a graph where one edge is removed, simulating a realistic "dynamic network" scenario
- Additionally, we simulate "worst-case" scenario by removing an edge that results in the maximum change in graph spectrum

Reusing Optimal QAOA Parameters

- Similar concentration results have been shown for MAXCUT on regular graphs (Brandao et al. 2018)
- Dur results extend previous work in the following ways:
 - we show QAOA benefits from such reusing on a problem with different properties (modularity community detection), where the number of clauses in which a variable participates is not bounded
 - we consider a "worst-case" scenario
- Amortizing the cost of parameter optimization can drastically reduce the cost of running QAOA:

```
(1ms per measurement) \times (1,000 measurements per evaluation) \times (10 evaluations to locally refine the solution) \approx 10 \text{ sec}
```


Conclusions

- Directly optimizing QAOA parameters is hard
- Multistart APOSMM approach is capable of identifying better local minima within the same budget of function evaluations than naïve local methods
- In this work, we focused on derivative-free methods, but our approach is trivially extendable to gradient-based methods by using a gradient-based local method within APOSMM
- Amortizing the cost of finding optimal QAOA parameters can make the projected running time competitive with classical state-of-the-art solvers
- Machine learning methods can be helpful stay tuned for more results coming soon!

Conclusions

- Directly optimizing QAOA parameters is hard
- Multistart APOSMM approach is capable of identifying better local minima within the same budget of function evaluations than naïve local methods
- In this work, we focused on derivative-free methods, but our approach is trivially extendable to gradient-based methods by using a gradient-based local method within APOSMM
- Amortizing the cost of finding optimal QAOA parameters can make the projected running time competitive with classical state-of-the-art solvers
- Machine learning methods can be helpful stay tuned for more results coming soon!

Questions? Comments? Find me after the talk or online!

I plan to graduate in May 2020, so I'm looking for postdoc / research scientist opportunities Email:

rshaydu@clemson.edu

Web: shaydul.in

LinkedIn: https://www.linkedin.com/in/rshaydu/