
Multistart Methods for Quantum
Approximate Optimization
Ruslan Shaydulin, Clemson University
Ilya Safro, Clemson University
Jeffrey Larson, Argonne National Lab

#ClemsonSC18

Outline

• Quick intro to Quantum Computing

• QAOA definition and the challenge of QAOA parameter optimization

• Our 1st contribution — multistart methods applied to QAOA

• Our 2nd contribution — an extensive study of the performance of derivative-free

methods for QAOA parameter optimization

• Our 3rd contribution — extend previous results on QAOA parameter reusing

#ClemsonSC18

Quantum Computing 101

• The state of a qubit is a vector in two-dimensional complex vector space
span by two basis states :

• If we measure a qubit, we get 0 with probability and 1 with probability

• The state of an two-qubit system:

#ClemsonSC18

Quantum Computing 101

• The state of a qubit is a vector in two-dimensional complex vector space
span by two basis states :

• If we measure a qubit, we get 0 with probability and 1 with probability

• The state of an n-qubit system:
• Note that we need 2n complex

numbers to describe an n-qubit
system

#ClemsonSC18

Quantum Computing 101

• Computation is performed by applying gates (unitary matrices):

#ClemsonSC18

Quantum Computing 101

• Computation is performed by applying gates (unitary matrices):

State:

#ClemsonSC18

Quantum Computing 101

State:

#ClemsonSC18

Quantum Computing 101

State:

#ClemsonSC18

Community Detection

• Also known as graph clustering
• Modularity is “the quality” of detected community structure in the network

Modularity maximization

Part 1

Part 2

#ClemsonSC18

Community Detection

• Modularity is “the number of edges falling within groups minus the
expected number in an equivalent network with edges placed at random”

• Formally:

Modularity maximization

Actual number of edges
Expected number of edges

Community assignment of vertex i

NP-hard problem

#ClemsonSC18

Combinatorial Optimization (CO)
on a quantum computer in one slide
• Consider a CO problem on n variables:

• Notice that has eigenvalues -1, +1 with eigenvectors
• We can construct the following 2nx2n Hermitian matrix (Hamiltonian) such

that its eigenvector (eigenstate) with the largest eigenvalue (energy)
corresponds to the solution of the original problem:

#ClemsonSC18

Combinatorial Optimization (CO)
on a quantum computer in one slide
• Consider a CO problem on n variables:

• Notice that has eigenvalues -1, +1 with eigenvectors
• We can construct the following 2nx2n Hermitian matrix (Hamiltonian) such

that its eigenvector (eigenstate) with the largest eigenvalue (energy)
corresponds to the solution of the original problem:

• Now all we have to do is prepare this eigenstate!

#ClemsonSC18

Quantum Approximate Optimization
Algorithm (QAOA)
• QAOA prepares a parameterized “trial” (ansatz) state of the form:

• Then a classical optimizer is used to vary the parameters to maximize:

#ClemsonSC18

Quantum Approximate Optimization
Algorithm (QAOA)
• QAOA prepares a parameterized “trial” (ansatz) state of the form:

• Note that for p → ∞ QAOA can at least exactly approximate adiabatic
quantum evolution and can therefore find the exact optimal solution

• For small p, picture is more mixed, but there is some indication of the
potential for quantum advantage

#ClemsonSC18

QAOA parameter optimization is hard

• The parameter space is highly nonconvex
and contains many low-quality, nondegenerate local
optima

• Local optimizers get stuck
in local optima

#ClemsonSC18

QAOA parameter optimization is hard

• The parameter space is highly nonconvex
and contains many low-quality, nondegenerate local
optima

• Local optimizers get stuck
in local optima

#ClemsonSC18

QAOA parameter optimization is hard

• The parameter space is highly nonconvex
and contains many low-quality, nondegenerate local
optima

• Local optimizers get stuck
in local optima

• Our solution:
multistart methods

#ClemsonSC18

Multistart methods (APOSMM)

• Traditional approach: start local methods from different initial parameters
• Problem with traditional approach: the same optimum might be identified

by multiple local optimization runs, resulting in unnecessary function
evaluations

• APOSSM:
• Starts runs from the points that do not have a better point within an

algorithmically controlled neighborhood
• Considers both the initially sampled points as well as the points generated by an

ensemble of local optimization runs

• Note that APOSSM still needs a local optimizer – we choose BOBYQA as it
performs best on our benchmarks

#ClemsonSC18

Multistart methods (APOSMM)

• APOSMM+BOBYQA identifies better optima with the same budget of function
evaluations

#ClemsonSC18

Multistart methods (APOSMM)

• APOSMM+BOBYQA identifies better optima with the same budget of function
evaluations

Correctly identifies the optima

#ClemsonSC18

Benchmark

• Modularity maximization on six synthetic graphs with community structure:
three instances of connected caveman graph and three instances of random
partition graph.

• All graphs have between 10 and 12 vertices
• Compare with 6 state-of-the-art derivative-free optimization methods
• All methods are given a budget of 1,000 function evaluations
• Each problem instance is run from 10 different starting points

Random Partition GraphConnected Caveman Graph

#ClemsonSC18

Note on the choice of the budget of
function evaluations
• We follow the estimates in Guerreschi et al, Nature Scientific Reports 2019

• Assume 1 millisecond for one ”shot” (measurement of the quantum system)

• Assume 1,000 measurements needed for obtaining the statistics to calculate

the objective function value

• Running time:

• Note that the hardware is rapidly evolving, so it is impossible to project this

numbers into the future with certainty

#ClemsonSC18

APOSMM vs no-restart local methods

• Set the tolerances of the local solvers to zero and allow them to run until
convergence

#ClemsonSC18

APOSMM vs no-restart local methods

• Set the tolerances of the local solvers to zero and allow them to run until
convergence

• However, here APOSMM may start another local optimization run after one
has converged and local methods are not restarted

#ClemsonSC18

APOSMM vs naïve restart local methods

• Set the tolerances of local solvers to be the same across all seven methods
• If a local method converges before exhausting its budget of 1,000 function

evaluations, it is restarted at a different random point

#ClemsonSC18

APOSMM vs naïve restart local methods

• For p=2, 4 the best-performing method (APOSMM+BOBYQA) solves only
60% and 40% of the problems, respectively

• These results indicate that even for a small number of QAOA steps, finding
good variational parameters is hard under realistic time constraints

Is there hope?

#ClemsonSC18

Reusing Optimal QAOA parameters

• We estimate true optimal parameters restarting
BOBYQA from random points until 100,000
function evaluations have been used

• This approach identifies multiple high-quality
local optima

• We then use these high-quality QAOA
parameters as initial guesses for local methods
and APOSMM+BOBYQA for a graph where one
edge is removed, simulating a realistic
“dynamic network” scenario

#ClemsonSC18

Reusing Optimal QAOA parameters
• We estimate true optimal parameters restarting

BOBYQA from random points until 100,000
function evaluations have been used

• This approach identifies multiple high-quality
local optima

• We then use these high-quality QAOA
parameters as initial guesses for local methods
and APOSMM+BOBYQA for a graph where one
edge is removed, simulating a realistic
“dynamic network” scenario

• Additionally, we simulate “worst-case” scenario
by removing an edge that results in the
maximum change in graph spectrum

#ClemsonSC18

Reusing Optimal QAOA Parameters

• Similar concentration results have been shown for MAXCUT on regular
graphs (Brandao et al. 2018)

• Our results extend previous work in the following ways:
• we show QAOA benefits from such reusing on a problem with different properties

(modularity community detection), where the number of clauses in which a
variable participates is not bounded

• we consider a ”worst-case” scenario

• Amortizing the cost of parameter optimization can drastically reduce the
cost of running QAOA:

#ClemsonSC18

Conclusions

• Directly optimizing QAOA parameters is hard
• Multistart APOSMM approach is capable of identifying better local minima

within the same budget of function evaluations than naïve local methods
• In this work, we focused on derivative-free methods, but our approach is

trivially extendable to gradient-based methods by using a gradient-based
local method within APOSMM

• Amortizing the cost of finding optimal QAOA parameters can make the
projected running time competitive with classical state-of-the-art solvers

• Machine learning methods can be helpful – stay tuned for more results
coming soon!

#ClemsonSC18

Conclusions

• Directly optimizing QAOA parameters is hard
• Multistart APOSMM approach is capable of identifying better local minima

within the same budget of function evaluations than naïve local methods
• In this work, we focused on derivative-free methods, but our approach is

trivially extendable to gradient-based methods by using a gradient-based
local method within APOSMM

• Amortizing the cost of finding optimal QAOA parameters can make the
projected running time competitive with classical state-of-the-art solvers

• Machine learning methods can be helpful – stay tuned for more results
coming soon!

Questions? Comments? Find me after the talk or online!
I plan to graduate in May 2020, so I’m looking for postdoc / research scientist opportunities Email:

rshaydu@clemson.edu
Web: shaydul.in

LinkedIn: https://www.linkedin.com/in/rshaydu/

	Multistart Methods for Quantum Approximate Optimization
	Outline
	Quantum Computing 101
	Quantum Computing 101
	Quantum Computing 101
	Quantum Computing 101
	Quantum Computing 101
	Quantum Computing 101
	Community Detection
	Community Detection
	Combinatorial Optimization (CO) �on a quantum computer in one slide
	Combinatorial Optimization (CO) �on a quantum computer in one slide
	Quantum Approximate Optimization Algorithm (QAOA)
	Quantum Approximate Optimization Algorithm (QAOA)
	QAOA parameter optimization is hard
	QAOA parameter optimization is hard
	QAOA parameter optimization is hard
	Multistart methods (APOSMM)
	Multistart methods (APOSMM)
	Multistart methods (APOSMM)
	Benchmark
	Note on the choice of the budget of function evaluations
	APOSMM vs no-restart local methods
	APOSMM vs no-restart local methods
	APOSMM vs naïve restart local methods
	APOSMM vs naïve restart local methods
	Is there hope?
	Reusing Optimal QAOA parameters
	Reusing Optimal QAOA parameters
	Reusing Optimal QAOA Parameters
	Conclusions
	Conclusions

