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Outline

• Quick intro to Quantum Computing

• QAOA definition and the challenge of QAOA parameter optimization

• Our 1st contribution — multistart methods applied to QAOA

• Our 2nd contribution — an extensive study of the performance of derivative-free 

methods for QAOA parameter optimization

• Our 3rd contribution — extend previous results on QAOA parameter reusing
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Quantum Computing 101

• The state of a qubit is a vector in two-dimensional complex vector space 
span by two basis states               :

• If we measure a qubit, we get 0 with probability          and 1 with probability

• The state of an two-qubit system:
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Quantum Computing 101

• The state of a qubit is a vector in two-dimensional complex vector space 
span by two basis states               :

• If we measure a qubit, we get 0 with probability          and 1 with probability

• The state of an n-qubit system:
• Note that we need 2n complex

numbers to describe an n-qubit
system
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Quantum Computing 101

• Computation is performed by applying gates (unitary matrices):
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Quantum Computing 101

• Computation is performed by applying gates (unitary matrices):

State:
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Quantum Computing 101

State:
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Community Detection

• Also known as graph clustering
• Modularity is “the quality” of detected community structure in  the network

Modularity maximization

Part 1

Part 2
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Community Detection

• Modularity is “the number of edges falling within groups minus the 
expected number in an equivalent network with edges placed at random”

• Formally:

Modularity maximization

Actual number of edges
Expected number of edges

Community assignment of vertex i

NP-hard problem
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Combinatorial Optimization (CO) 
on a quantum computer in one slide
• Consider a CO problem on n variables:

• Notice that         has eigenvalues -1, +1 with eigenvectors
• We can construct the following  2nx2n Hermitian matrix (Hamiltonian) such 

that its eigenvector (eigenstate) with the largest eigenvalue (energy) 
corresponds to the solution of the original problem:
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Combinatorial Optimization (CO) 
on a quantum computer in one slide
• Consider a CO problem on n variables:

• Notice that         has eigenvalues -1, +1 with eigenvectors
• We can construct the following  2nx2n Hermitian matrix (Hamiltonian) such 

that its eigenvector (eigenstate) with the largest eigenvalue (energy) 
corresponds to the solution of the original problem:

• Now all we have to do is prepare this eigenstate!
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Quantum Approximate Optimization 
Algorithm (QAOA)
• QAOA prepares a parameterized “trial” (ansatz) state of the form:

• Then a classical optimizer is used to vary the parameters           to maximize:
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Quantum Approximate Optimization 
Algorithm (QAOA)
• QAOA prepares a parameterized “trial” (ansatz) state of the form:

• Note that for p → ∞ QAOA can at least exactly approximate adiabatic 
quantum evolution and can therefore find the exact optimal solution

• For small p, picture is more mixed, but there is some indication of the 
potential for quantum advantage
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QAOA parameter optimization is hard

• The parameter space is highly nonconvex
and contains many low-quality, nondegenerate local 
optima

• Local optimizers get stuck
in local optima
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QAOA parameter optimization is hard

• The parameter space is highly nonconvex
and contains many low-quality, nondegenerate local 
optima

• Local optimizers get stuck
in local optima

• Our solution:
multistart methods
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Multistart methods (APOSMM)

• Traditional approach: start local methods from different initial parameters
• Problem with traditional approach: the same optimum might be identified 

by multiple local optimization runs, resulting in unnecessary function 
evaluations

• APOSSM: 
• Starts runs from the points that do not have a better point within an 

algorithmically controlled neighborhood
• Considers both the initially sampled points as well as the points generated by an 

ensemble of local optimization runs

• Note that APOSSM still needs a local optimizer – we choose BOBYQA as it 
performs best on our benchmarks
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Multistart methods (APOSMM)

• APOSMM+BOBYQA identifies better optima with the same budget of function 
evaluations
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Multistart methods (APOSMM)

• APOSMM+BOBYQA identifies better optima with the same budget of function 
evaluations

Correctly identifies the optima
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Benchmark

• Modularity maximization on six synthetic graphs with community structure: 
three instances of connected caveman graph and three instances of random 
partition graph. 

• All graphs have between 10 and 12 vertices
• Compare with 6 state-of-the-art derivative-free optimization methods
• All methods are given a budget of 1,000 function evaluations
• Each problem instance is run from 10 different starting points

Random Partition GraphConnected Caveman Graph
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Note on the choice of the budget of 
function evaluations
• We follow the estimates in Guerreschi et al, Nature Scientific Reports 2019

• Assume 1 millisecond for one ”shot” (measurement of the quantum system)

• Assume 1,000 measurements needed for obtaining the statistics to calculate 

the objective function value

• Running time:

• Note that the hardware is rapidly evolving, so it is impossible to project this 

numbers into the future with certainty
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APOSMM vs no-restart local methods

• Set the tolerances of the local solvers to zero and allow them to run until 
convergence
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APOSMM vs no-restart local methods

• Set the tolerances of the local solvers to zero and allow them to run until 
convergence

• However, here APOSMM may start another local optimization run after one 
has converged and local methods are not restarted
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APOSMM vs naïve restart local methods

• Set  the tolerances of local solvers to be the same across all seven methods
• If a local method converges before exhausting its budget of 1,000 function 

evaluations, it is restarted at a different random point
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APOSMM vs naïve restart local methods

• For p=2, 4 the best-performing method (APOSMM+BOBYQA) solves only 
60% and 40% of the problems, respectively

• These results indicate that even for a small number of QAOA steps, finding 
good variational parameters is hard under realistic time constraints



Is there hope?
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Reusing Optimal QAOA parameters

• We estimate true optimal parameters restarting 
BOBYQA from random points until 100,000 
function evaluations have been used

• This approach identifies multiple high-quality 
local optima

• We then use these high-quality QAOA 
parameters as initial guesses for local methods 
and APOSMM+BOBYQA for a graph where one 
edge is removed, simulating a realistic 
“dynamic network” scenario
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Reusing Optimal QAOA parameters
• We estimate true optimal parameters restarting 

BOBYQA from random points until 100,000 
function evaluations have been used

• This approach identifies multiple high-quality 
local optima

• We then use these high-quality QAOA 
parameters as initial guesses for local methods 
and APOSMM+BOBYQA for a graph where one 
edge is removed, simulating a realistic 
“dynamic network” scenario

• Additionally, we simulate “worst-case” scenario 
by removing an edge that results in the 
maximum change in graph spectrum
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Reusing Optimal QAOA Parameters

• Similar concentration results have been shown for MAXCUT on regular 
graphs (Brandao et al. 2018)

• Our results extend previous work in the following ways:
• we show QAOA benefits from such reusing on a problem with different properties 

(modularity community detection), where the number of clauses in which a 
variable participates is not bounded

• we consider a ”worst-case” scenario

• Amortizing the cost of parameter optimization can drastically reduce the 
cost of running QAOA:
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Conclusions

• Directly optimizing QAOA  parameters is hard
• Multistart APOSMM approach is capable of identifying better local minima 

within the same budget of function evaluations than naïve local methods
• In this work, we focused on derivative-free methods, but our approach is 

trivially extendable to gradient-based methods by using a gradient-based 
local method within APOSMM

• Amortizing the cost of finding optimal QAOA parameters can make the 
projected running time competitive with classical state-of-the-art solvers

• Machine learning methods can be helpful – stay tuned for more results 
coming soon!
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Conclusions

• Directly optimizing QAOA  parameters is hard
• Multistart APOSMM approach is capable of identifying better local minima 

within the same budget of function evaluations than naïve local methods
• In this work, we focused on derivative-free methods, but our approach is 

trivially extendable to gradient-based methods by using a gradient-based 
local method within APOSMM

• Amortizing the cost of finding optimal QAOA parameters can make the 
projected running time competitive with classical state-of-the-art solvers

• Machine learning methods can be helpful – stay tuned for more results 
coming soon!

Questions? Comments? Find me after the talk or online!
I plan to graduate in May 2020, so I’m looking for postdoc / research scientist opportunities Email: 

rshaydu@clemson.edu
Web: shaydul.in

LinkedIn: https://www.linkedin.com/in/rshaydu/
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