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INTRODUCTION
SCIENTIFIC SIMULATION FRAMEWORKS (HPC SIMULATIONS)

* High-performance computing (HPC)
— Perform research activities through computer modeling, simulation, and analysis.

— Large volumes of data, reaches exabyte range
* Periodic checkpointing (checkpoint/restart)
* Post-simulation data analysis

 File systems in extreme-scale systems

— Limited storage space and I/O time, e.g.:

« 170 TB of CESM data is being produced by CMIP5 project WERP @ CMIP5
* n*PB data will be generated for upcoming CMIP6 experiments per entire run M =il

* Yellowstone (supercomputer): tens of PB of centralized file system and data storage
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INTRODUCTION
DATA REDUCTION/DATA COMPRESSION

» Data Reduction/Data Compression

— Lossless Compression: 100% of data fidelity (fully invertible, 1:1 copy), but not able
to achieve appreciable data reduction (GZIP, BZIP, etc.)

— Lossy Compression: high compression ratio, but error introduced (SZ, ZFP, etc.)

* Floating Point Data Compression (Scientific Simulations)
— e.g., double precision
— High precision on reconstructed (decompressed) data

— Randomness



INTRODUCTION
LOSSY COMPRESSION TECHNIQUES FOR SCIENTIFIC DATA

* Understanding Errors
— Scientific data can tolerate a certain amount of accuracy loss

— Errors are inherent in scientific simulations (generated from inaccurate scientific
Sensors)

° Study by Tao et al.: A comprehensive study of lossy compression on HPC datasets
— Examined the impact of reduced accuracy on scientific data analysis frameworks.

— In-depth understanding of the benefits and pitfalls (lossy compression)



ANALYSIS OF TRANSFORM-BASED LOSSY COMPRESSION
TRANSFORM-BASED LOSSY COMPRESSION

* Discrete Data Transform (DCT, HWT, CDF 9/7, etc.)
* Decorrelation (vs. time domain)

* Energy Compaction Property
— Energy of a signal
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ANALYSIS OF TRANSFORM-BASED LOSSY COMPRESSION

* Estimation of Energy Compaction on Various Transform
— Real-world HPC datasets
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Transform Threshold rlds mrsos sedov cellular Eddy Vortex
Original 1/32 6.03 21.65 27.27 6.53 25.91 44.28
1/64 3.09 11.63 15.50 3.45 16.08 28.12
DCT.II 1/32 99.81 91.36 94.50 99.49 94.78 98.35
1/64 99.69 88.17 92.06 99.13 89.29 96.93
HWT 5-level 1/32 96.94 33.22 65.91 92.86 36.64 36.01
HWT 6-level 1/64 93.63 17.60 47.87 86.67 18.12 20.19
CDF 9/7 5-level 1/32 98.08 39.17 62.78 91.82 24.76 27.07
CDF 9/7 6-level 1/64 95.83 21.58 44.46 84.47 11.97 15.47

IE 0% [ [—DCT -~ HWT-2—HWT-6 - - CDF-2—— CDF-6|

0% 2% 4% 6% 8%

Total coefficient used
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ENERGY COMPACTION BASED COMPRESSION ALGORITHM
DCT (DISCRETE COSINE TRANSFORM)- BASED LOSSY COMPRESSION

* Block Decomposition with DCT

* Energy Compaction based compression algorithm
— Compression with a fixed energy compaction rate (£ECR)

— Compression with an optimal energy compaction rate (ECR)



COMPRESSION WITH A FIXED ENERGY COMPACTION RATE

* Fixed Energy Compaction Rate (ECR)

* Find top dominant block coefficients
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COMPRESSION WITH AN OPTIMAL ENERGY COMPACTION RATE

* Spline Fitting 51.0

* Kneedle Algorithm 50.7
— Knee-point
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Ky(zr) = (1+ f'(z)2)15’ 0.3
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COMPRESSION WITH AN OPTIMAL ENERGY COMPACTION RATE

* Spline Fitting
— 1D interpolation

— Polynomial interpolation

ed Energy Compaction
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- Normalized spline
- Difference curve
- Local maxima
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APPROXIMATION & ENCODING

» Adjustable error-controlled quantizer

* Approximate as bin’s center value

Equal width binning

Fixed error bound

» Encoding

Dominant coefficient
Approximation: bin center values
Bin indices (and QT)

Lossless add-on

Global bound
— " Bbins
outbound

—_—

outbound

each bin

save “as exact’ save “as e S 1 ]
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coefficients value

Global bound: (-B*P, B*P)
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set error bound (P)
2 bin width

save as corresponding
“bin center value”
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EVALUATION (EXPERIMENTAL SETUP & APPLICATIONS)

* Conduct on Massachusetts Green High Performance Computing Cluster MGHPCC)
* 6 real-world scientific datasets

— rlds, mrsos, cellular, sedov, vortex, eddy

O Do | Vo e | o

Entropy | Dimension |

FLASH  Physics Solvers implicit with AMR FLASH [21] sedov 4.2385 1.0000 49702 1 31040%154
cellular | 2.6482E7 2.2083E7 4.1190 | 32768%295

CMIP5 Coupled Model Intercomparison Project CMIPS [22] rids 361.2303 285.8844 72106 | 12960%100
World Climate mrsos 44.5000 7.6916 44864 | 12960%100

_ _ _ Neks5000 [23] | cddy 4.8345 3.2366E° | 7.6047 | 16384%999

Nek5000 High-order Solver for fluid dynamics vortex 0.0550 0.0017 7.5797 | 37P24%99

a/CMIP5 M&HPCC
" e  MASSACHUSETTS GREEN HIGH PERFORMANCE
a fast and scalable high-order solver for computational fluid dynamics 3

ccccccccccccc
World Climate Research Programme



EVALUATION (SCHEMES & METRICS)

Evaluation Schemes e Rate-Distortion

o Al: compression with fixed energy compaction rate. — Bit-rate (smaller bit-rate

e A2: compression with optimal energy compaction rate. represents higher compression
e A2_interpld: A2 using 1D interpolation. ratio)

e A2_polynomial: A2 using polynomial interpolation.

o Al_B: Al with equal-width-binning.

e A2_interpld_B & A2_polynomial_B: A2_interpld and
A2_polynomial with equal-width-binning, respectively.

— Distortion: PSNR (higher
PSNR represents less error)

14



PSNR (dB)

EVALUATION
COMPARISON BETWEEN FIXED AND OPTIMAL ENERGY COMPACTION RATES
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EVALUATION

RATE-DISTORTION AND BLOCK SIZE
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EVALUATION
SPLINE FITTING

Total number of coefficients (on average) used in each block

Algorithm sedov | cellular rlds mrsos eddy vortex
Interpld 3.929 6.844 9.356 11.172 | 9.597 11.925
Polynomial | 3.853 6.449 9.557 10.956 [ 9.182 10.122
Average energy compaction rate (%)
Algorithm sedov | cellular rlds mrsos eddy vortex
Interpld 98.44 99.59 99.99 | 99.99 89.83 93.55
Polynomial | 98.44 99.59 99.99 [ 99.99 | 90.12 91.08
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CONCLUSION

*  We analyze different transforms by exploiting their energy compaction property.
By finding an optimal energy compaction rate based on our knee detection
algorithm, our compression technique can acquire the best trade-off solution
between information loss and compression rate.

* Specially, on average, only 6.67 bits are required to preserve an optimal energy
compaction rate on our evaluated datasets. Our knee detection algorithm improves
the distortion in terms of peak signal-to-noise ratio by 2.46 dB on average.
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