IdPrism: Rapid Analysis of Forensic DNA Samples Using MPS SNP Profiles

Darrell O. Ricke, PhD,

James Watkins, Philip Fremont-Smith, & Adam Michaleas

2019 IEEE HPEC

Sept. 25, 2019

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

UNCLASSIFIED

Disclaimer

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported under Air Force Contract No. FA8702-15-D-0001 by the Defense Threat Reduction Agency (DTRA). Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the U.S. Air Force or Defense Threat Reduction Agency.

© 2019 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

The authors have no competing financial interest to disclose.

Overview

Introduction to DNA Forensics

Computational Bottlenecks

- SNP allele calling
- Identification Searching & Mixture Analysis
- Statistics Probability of Random Man Not Excluded

Core DNA Forensics Concepts

UNCLASSIFIED

Core DNA Forensics Concepts

Allele: One of many DNA sequences that may occupy a locus

SNP Sequencing To Meet Requirements

Requirements	STR Sizing	SNP Sequencing
Human ID		
Multi-contributor samples		
Extract unknown profiles		
Extended kinship		
Touch samples		
Biogeographic ancestry		
Appearance		

Converting Biological Signatures to Digital 'Barcodes'

Selection of rare SNPs creates unique minor allele signatures/barcodes for individuals & enables effective differentiation of multiple barcodes in a mixture

SNP Allele Calling and Sequencing Dynamic Range

Thousands of sequence reads at each SNP loci enables sensitive detection of minor contributors

Overview

Introduction to DNA Forensics

Computational Bottlenecks

- SNP allele calling
- Identification Searching & Mixture Analysis
- Statistics Probability of Random Man Not Excluded

Problem #1 - SNP Calling Overview

Problem Complexity: O(N x L x M)

- 100 million sequences O(N)
- 200 base pair read lengths O(L)
- 2.5k to 15k target SNP loci O(M)

Current Standard pipelines:

- Align HTS sequences to human reference genome
- SNP call aligned reads
- One to many hours on larger Linux servers

New Approach: O(N x L)

- Identify target loci by sequence tags
 - Allow shared tags to map to 2+ loci
- Lock in target SNPs with flanking sequences

Example rs142 HTS reads (forward strand)

SNP Allele Calling Runtime Comparisons

Statistical Power of Large SNP Panel Sequencing

P(False Match) is function of total # of mixture major allele SNPs (N)

Let p be minor allele frequency Let q be the major allele frequency (q = 1 – p) Let L be the number of allele mismatches - enables tolerance for incomplete profiles

Increased statistical power with more SNPs

$$P_{RMNE}(L+1) = P_{RMNE}(L) * \frac{(n-L)}{L+1} * K$$

Mixture Analysis Runtime Comparisons

IdPrism: Advanced DNA Forensics Platform

The IdPrism Platform architecture for DNA analysis addresses current capability gaps within an extensible and scalable framework

Phase I Results: Finding Known References in DNA Mixture

Mixture Analysis Approach

Lab Equimolar 6-Person Mixture

Individual	P(RMNE)
A	2.8e-54
В	2.1e-54
С	2.1e-54
D	2.1e-54
E	2.1e-54
F	2.7e-54

Demonstrates MIT LL SNP approach can identify 6+ contributors in complex mixtures

Finding Known References in DNA Mixture

Demonstrates MIT LL SNP approach can identify 10⁺ contributors in complex mixtures

UNCLASSIFIED

References

- Voskoboinik & Darvasi "Forensic Identification of an Individual in Complex DNA Mixtures" Forensic Sci. Int. Genet. 5:428-435 (2011)
- Isaacson *et al.* "Robust detection of individual forensics profiles in DNA mixtures. Forensic Sci. Int. Genet. 14:31-7 (2015)
- Ricke *et al.* "GrigoraSNPs: Optimized HTS DNA forensic SNP Analysis" Journal of Forensic Sciences 63:1841-1845 (2018)
- Ricke "FastID: Extremely Fast Forensic DNA Comparisons" IEEE HPEC (2017)
- Ricke & Schwartz "Fast P(RMNE): Fast Forensic DNA Probability of Random Man Not Excluded Calculation" F1000Research (2017)
- Ricke *et al.* "Estimating Individual Contributions to Complex DNA SNP Mixtures. Journal of Forensic Sciences (2019)
- Patent application: DNA Mixtures from One or More Sources and Methods of Building Individual Profiles Therefrom
 - US 62/534,590 PCT/US2018/041081, W0 2019/010410