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Today’s Research Clouds

• Globally distributed, multi provider, individually operated
• Example: Three NSF funded research clouds
• GENI/ExoGENI

– Distributed/Networking focused
– 18 US sites 

• Chameleon Cloud
– High capacity, reconfigurable cloud for repeatable science 

experiments
– 2 sites: Illinois, Texas

• CloudLab
– Flexible, distributed scientific cloud
– 3 sites: Utah, Wisconsin, South Carolina

• Challenge: Difficult to provision resources across multiple clouds



Toward Multi-Cloud Research Infrastructure

• Current trend: go multi-cloud
– Enhanced compute and networking performance
– Reduced cloud resource prices
– Emergence of IoT and edge computing
– Diverse compute and networking needs

• Federated clouds
– User may integrate multiple cloud resources in single reservation

• Multi-cloud market place
– User may choose resources from multiple clouds based on

needs (e.g., geographical location)



Metadata for Clouds

• Metadata services store basic information about resources
– Instance ID, region (location), project ID
– Network interfaces (Mac/IP address)
– Instances’ configurations (e.g., CPU, RAM)
– Storage (e.g., NFS)

• Configuration data
– SSH-keys
– Host names

• Application data
– Scripts to run when nodes are alive
– Routes



COMET: A Distributed Metadata Service for 
Multi-Cloud Infrastructures
• Designed to store metadata for applications running on multiple 

clouds
• Who needs to access metadata?
• Users 

– Tenants responsible for creating VMs or slices 
– Other users with shared access

• Cloud provider agents
– Such as Controllers or Aggregate managers

• Tenant infrastructure controllers
– Such as SDN controllers

• Applications running inside compute nodes
– Such as Hadoop and HTCondor



Existing Metadata Service: OpenStack



What if querying metadata between clouds?



OpenStack Metadata Service

• No password-based 
access options

• A node can only retrieve its
own metadata

• Difficult to sync metadata
among cluster of nodes
– Key, IP, hostname exchange

is usually needed by
distributed applications

– Hadoop
– Condor
– MPI



COMET Architecture 



Example Naming Hierarchy for COMET API

• ScopeID
– Unique ID of the scope of resources (slice or sliver)

• Family
– User-defined string

• Key 
– User-defined sub-level string 

• Read Token/Write Token
– Tokens needed for read and write access

• Value 
– Single value or a serialized byte array 



COMET Data Model

• ScopeID – unique ID of a slice or sliver
• Family – user-defined string with user-imposed semantics
• Key – user-defined string with user-imposed semantics
• Value – single value or a map
• Read token – client defined ‘visibility’ tag
• If Deleted, Write Token, Context Value, Comet Version, Deletion 
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COMET Operations

• WriteScope
– Create or modify a named scope within a context

• DeleteScope
– Delete scope within a context

• ReadScope
– Retrieve a value from a named scope within a context

• EnumerateScopes
– Return a list of existing scopes within a context



COMET APIs and Cert Requirements 

COMET API calls and certificate requirements. V = validate if a client cert/or 
token is trusted, N = specify a new token, O = a valid client cert is optional. 



User Metadata Exchange



User Metadata Exchange



User Metadata Exchange



User Metadata Exchange



Evaluations

• COMET hosted on AWS
– US east Ohio region
– EC2 t2.large compute nodes
– 2 vCPUs, 8 GB RAM
– Three COMET head nodes (Round Robin)

• Read and Write tests
– Sequential and random R/W
– Number of requests 100 -- 107



Evaluations – Sequential R/W

• Similar read and write speed
• Similar response time with

less than 105 requests
• Significant longer response

time with more than 105

requests



Evaluations – Random R/W

• Similar read and write 
speed with less than 105

requests
• Similar response time with 

less than 105 requests
• Longer read time (1.5x) with

more than 105 requests 



Conclusions

• COMET: metadata management service that 
focuses on security and flexibility for multi-cloud 
applications 

• Discussion on design, implementation and 
evaluation of COMET services

• COMET open-source code base:
– https://github.com/RENCI-NRIG/COMET-

Accumulo/releases/tag/comet-spring-1.0.0

https://github.com/RENCI-NRIG/COMET-Accumulo/releases/tag/comet-spring-1.0.0


Thank you!
Questions?
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