
COMET: 
A Distributed Metadata 

Service for Federated Clouds

Cong Wang, Komal Thareja, Michael Stealey, 
Paul Ruth, Ilya Baldin

RENCI, University of North Carolina at Chapel Hill



Today’s Research Clouds

• Globally distributed, multi provider, individually operated
• Example: Three NSF funded research clouds
• GENI/ExoGENI

– Distributed/Networking focused
– 18 US sites 

• Chameleon Cloud
– High capacity, reconfigurable cloud for repeatable science 

experiments
– 2 sites: Illinois, Texas

• CloudLab
– Flexible, distributed scientific cloud
– 3 sites: Utah, Wisconsin, South Carolina

• Challenge: Difficult to provision resources across multiple clouds



Toward Multi-Cloud Research Infrastructure

• Current trend: go multi-cloud
– Enhanced compute and networking performance
– Reduced cloud resource prices
– Emergence of IoT and edge computing
– Diverse compute and networking needs

• Federated clouds
– User may integrate multiple cloud resources in single reservation

• Multi-cloud market place
– User may choose resources from multiple clouds based on

needs (e.g., geographical location)



Metadata for Clouds

• Metadata services store basic information about resources
– Instance ID, region (location), project ID
– Network interfaces (Mac/IP address)
– Instances’ configurations (e.g., CPU, RAM)
– Storage (e.g., NFS)

• Configuration data
– SSH-keys
– Host names

• Application data
– Scripts to run when nodes are alive
– Routes



COMET: A Distributed Metadata Service for 
Multi-Cloud Infrastructures
• Designed to store metadata for applications running on multiple 

clouds
• Who needs to access metadata?
• Users 

– Tenants responsible for creating VMs or slices 
– Other users with shared access

• Cloud provider agents
– Such as Controllers or Aggregate managers

• Tenant infrastructure controllers
– Such as SDN controllers

• Applications running inside compute nodes
– Such as Hadoop and HTCondor



Existing Metadata Service: OpenStack



What if querying metadata between clouds?



OpenStack Metadata Service

• No password-based 
access options

• A node can only retrieve its
own metadata

• Difficult to sync metadata
among cluster of nodes
– Key, IP, hostname exchange

is usually needed by
distributed applications

– Hadoop
– Condor
– MPI



COMET Architecture 



Example Naming Hierarchy for COMET API

• ScopeID
– Unique ID of the scope of resources (slice or sliver)

• Family
– User-defined string

• Key 
– User-defined sub-level string 

• Read Token/Write Token
– Tokens needed for read and write access

• Value 
– Single value or a serialized byte array 



COMET Data Model

• ScopeID – unique ID of a slice or sliver
• Family – user-defined string with user-imposed semantics
• Key – user-defined string with user-imposed semantics
• Value – single value or a map
• Read token – client defined ‘visibility’ tag
• If Deleted, Write Token, Context Value, Comet Version, Deletion 

Timestamp

COMET KEY

Scope ID
COLUMN

Family Key Read Token

COMET VALUE

TIMESTAMP Deleted
?

Write 
Token

Context 
Value

COMET 
Version

Delete
TS



COMET Operations

• WriteScope
– Create or modify a named scope within a context

• DeleteScope
– Delete scope within a context

• ReadScope
– Retrieve a value from a named scope within a context

• EnumerateScopes
– Return a list of existing scopes within a context



COMET APIs and Cert Requirements 

COMET API calls and certificate requirements. V = validate if a client cert/or 
token is trusted, N = specify a new token, O = a valid client cert is optional. 



User Metadata Exchange



User Metadata Exchange



User Metadata Exchange



User Metadata Exchange



Evaluations

• COMET hosted on AWS
– US east Ohio region
– EC2 t2.large compute nodes
– 2 vCPUs, 8 GB RAM
– Three COMET head nodes (Round Robin)

• Read and Write tests
– Sequential and random R/W
– Number of requests 100 -- 107



Evaluations – Sequential R/W

• Similar read and write speed
• Similar response time with

less than 105 requests
• Significant longer response

time with more than 105

requests



Evaluations – Random R/W

• Similar read and write 
speed with less than 105

requests
• Similar response time with 

less than 105 requests
• Longer read time (1.5x) with

more than 105 requests 



Conclusions

• COMET: metadata management service that 
focuses on security and flexibility for multi-cloud 
applications 

• Discussion on design, implementation and 
evaluation of COMET services

• COMET open-source code base:
– https://github.com/RENCI-NRIG/COMET-

Accumulo/releases/tag/comet-spring-1.0.0

https://github.com/RENCI-NRIG/COMET-Accumulo/releases/tag/comet-spring-1.0.0


Thank you!
Questions?


	COMET: �A Distributed Metadata Service for Federated Clouds
	Today’s Research Clouds
	Toward Multi-Cloud Research Infrastructure
	Metadata for Clouds
	COMET: A Distributed Metadata Service for Multi-Cloud Infrastructures
	Existing Metadata Service: OpenStack
	What if querying metadata between clouds?
	OpenStack Metadata Service
	COMET Architecture 
	Example Naming Hierarchy for COMET API
	COMET Data Model
	COMET Operations
	COMET APIs and Cert Requirements 
	User Metadata Exchange
	User Metadata Exchange
	User Metadata Exchange
	User Metadata Exchange
	Evaluations
	Evaluations – Sequential R/W
	Evaluations – Random R/W
	Conclusions
	Thank you!�Questions?

