
IEEE HPEC 2019 Presentation

DISTRIBUTION A – Approved for public release: distribution unlimited. AFMC-2019-034, OPS-19-34980 

Embedded GPU Cluster Computing 
Framework for Inference of 
Convolutional Neural Networks

Dr. Andrew C. Pineda
U.S. Air Force Research 

Laboratory Space 
Vehicles Directorate

Evan Kain
University of Pittsburgh
Diego Wildenstein

Arizona State University*

* Now attending Univ. of Pittsburgh

Presenter
Presentation Notes
Good evening, ladies and gentlemen.  My name is Evan Gretok, and I am here to present our work entitled “Comparative Benchmarking Analysis of Next-Generation Space Processors.”
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Presenter
Presentation Notes
This is a quick outline of my talk today, which will include the goals and motivations of this work, some relevant background information, our methodology, including platforms and applications we have assessed, and finally our results and conclusions.



Goals, Motivations, and Challenges
 Goals
 Characterize speedup, parallel efficiency, and other scaling 

properties of MPI wrapper for embedded GPU SOCs

 Predict best-case performance of TMR system for fault tolerance

 Motivations
 Run complex apps without flying large, power-hungry GPUs

 Match algorithms to space-compatible hardware

 Challenges
 Non-trivial overhead for domain decomposition

 Tradeoffs between efficiency and communications overhead
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MPI: Message-Passing Interface
TMR: Triple Modular Redundancy

GPU: Graphics Processing Unit
SOC: System on a Chip



TX2 Board

 256 CUDA cores

 Quad-core ARM A57 CPU

 Power dissipation

 NVIDIA Tegra TX2 – 15W TDP

 NVIDIA GeForce RTX 2080 Ti – 260W TDP

 NVIDIA Tesla V100 – 250W TDP
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Source: https://devblogs.nvidia.com/jetson-tx2-delivers-twice-
intelligence-edge/

Source: https://www.nvidia.com/en-in/geforce/graphics-cards/rtx-2080-ti/



Convolutional Neural Network
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 Treated as black box in this study

 Sublinear increase in processing 

time as image size increases

 Space application

 Low power

 Inherently reliable

 On-orbit inference
Source: https://www.codesofinterest.com/p/build-deeper.html
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Presentation Notes
An important consideration is that each of these processors is a single-core device.  The multicore nature of the upcoming next-generation space processors merits new tools and techniques to take advantage of new performance capabilities.



Distributed-Memory Multiprocessing
 Distributed-Memory Model
 Multiple compute nodes carry out work
 Nodes communicate and synchronize via function calls
 Each node can contain multiple cores with internal shared memory
 Contrast to shared memory: many threads on one device 

 Message-Passive Interface (MPI)
 Many implementations

• MPICH
• OpenMPI – de facto standard
• Vendor specific implementations

 Processes operate independently
 Data passed in messages
 Synchronization necessary
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Physical Network Setup
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Source: Google maps satellite view



Logical Network Setup
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Slave 3 Slave 4 Slave 5Source: Google maps satellite view



 Tiles may overlap to avoid splitting objects
Application
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Evaluation Methodology
 External timers

 Total program time
 Tiling

 Inference

 Translation of results

 TMR performance model
 Not full TMR

 Only model for most time-intensive parts

 No use of fault-tolerant MPI
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Performance of Tiling Scheme
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 Zero padding adds data
 Minima in additional data
 Maxima in speedup

 Tile width
 Optimal tile size
 Load balancing better for 

small tiles
 Overlap 
 Incurs performance penalty
 10% case representative of 

large range of overlaps



Parallel Performance
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 Linear decay in 
parallel efficiency

 Serial bottleneck
 Curve offset from overlap
 Overlap always generates 

extra data
 Zero padding  amplifies effect 
 No overlap is limiting case

 Input image size
 Maximum speedup
 Minimum speedup



Conclusions
 Maximum speedup parameters
 4.3 × speedup

 6 nodes

 0% tile overlap


𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
= 17%

 Maximum input image size increased
 Successfully increased total area by factor of 244

 Limited by routine used to read image

 No theoretical limit to input image size

 Best-case TMR performance
 3× slower

 No loss of accuracy for naïve fault model
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NSF SHREC Center
 NSF Center for Space, High-performance and Resilient Computing
 Founded in 2017 with focus on mission-critical computing needs
 Intersection of space, embedded, and high-performance computing
 Four university sites and over 30 industry and government partners

 Formerly NSF Center for High-performance Reconfigurable Computing
 CHREC began operation in 2007 and was sunset in 2017
 NOVO-G – large-scale reconfigurable supercomputer
 CHREC Space Processor (CSP) – hybrid COTS/rad-hard CPU/FPGA space computer

 For more information, please visit www.nsf-shrec.org
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With that, I would like to offer my thanks and gratitude for your time and attention and open the floor to any questions.
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