

Load Balancing Eager K-truss on GPU and CPU via Fine-Grained Parallelism

PRESENTED BY

^{1,2}Mark Blanco (markb1@cmu.edu), ²Tze Meng Low, ¹Kyungjoo Kim

¹Center for Computing Research, Sandia National Laboratories

²Electrical & Computer Engineering, Carnegie Mellon University

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Previously: Eager K-Truss

 v_2

Enumerate triangles in parallel over edges grouped by source vertex

 v_4

+

+

A found

 v_2

 v_4

╋

Load imbalance occurs between threads processing different outgoing neighborhoods!

 v_3

T.M. Low et al. "Linear Algebraic Formulation of Edge-centric K-truss Algorithms with Adjacency Matrices" IEEE HPEC 2018

ħ

()

3

M.P. Blanco, T.M. Low, and K. Kim, "Exploration of Fine-Grained Parallelism for Load Balancing Eager K-truss on GPU and CPU", IEEE HPEC 2019

Results: Performance on Tesla VI00 GPU with Kokkos

Fine-grained parallelism from edge-based tasks yields 16.9x - 9.9x speedup on GPU

M.P. Blanco, T.M. Low, and K. Kim, "Exploration of Fine-Grained Parallelism for Load Balancing Eager K-truss on GPU and CPU", IEEE HPEC 2019

4