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Presenter
Presentation Notes
This slide tells us what we’re going to talk about.
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Introduction

▪ Key elements of our work:
▪ Many-target tracking
▪ Many-sensor tracking
▪ Ship tracking
▪ Ship classification
▪ Unknown number of targets

▪ We created a tracker that achieves high track 
purity and high classification accuracy on several 
datasets.
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Presenter
Presentation Notes
This slide tells us what we’re doing in our work.
Many-target tracking: instance of the multi-target tracking problem in which there are a lot of targets (several dozen). Most work in multi-target tracking is done with relatively few targets (less than 10).
Many-sensor tracking: instance of the tracking problem in which observations come from many sensors. This is inconvenient because observations are not aligned by timestamp, sensors have vastly different properties/capabilities/errors, and there can be little confidence in the number of active targets at any given time. Most instances of the multi-target tracking problem are uni-sensor.
Ship tracking: we track ships as they move through the ocean.
Ship classification: we use machine learning to classify ships (targets) by type, e.g. tanker, pleasure craft.
Unknown number of targets: we do not know the number of ships in our datasets a priori. In most instances of the multi-target tracking problem, the number of targets is known or can be inferred. This actually causes a problem with the main performance metric in multi-target tracking, track purity. We will cover our solution later.
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Motivation

▪ Surveil ships in strategically important regions
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Presenter
Presentation Notes
This slide tells us why we’re doing our work. First sentence of abstract covers this pretty well: “Government agencies such as DARPA wish to know the numbers, locations, tracks, and types of vessels moving through strategically important regions of the ocean.”
Any additional detail on Ocean of Things welcome.
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Background

▪ Multitarget tracking:
▪ Global Nearest Neighbors (GNN)
▪ Multiple Hypothesis Testing (MHT)
▪ Metrics: track purity, disagreement accuracy

▪ Neural networks:
▪ Feed-forward
▪ Metric: classification accuracy
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Presenter
Presentation Notes
This slide tells us the tools we need to make it work.
GNN: Associates observation x at time t + 1 with the nearest observation x’ at time t. Very fast, greedy algorithm.
MHT: Rather than making the greedy choice for observation x at time t + 1, assigns a probability to all possible previous observations x’ at time t (different implementations have different ways of assigning the probability). The multiple hypotheses are propagated over several timesteps and the most likely is chosen. Can be very slow depending on how many timesteps you propagate hypotheses. 1 or 2 steps is fairly standard when there are many targets.
Both MTT algorithms were designed for uni-sensor tracking, so we need to make a change. This will be described later.
Track purity is the highest fraction of observations belonging to the same target that are assigned to a given track, divided by the total number of observations in the track. We use weighted mean track purity to combine the purities of all tracks into a single metric. Weight is by number of observations in the track.
Disagreement accuracy (described by the listing with the piecewise function on page 4 of the paper) calculates, among the total number of pairs of observations, the fraction of pairs for which the tracking algorithm and the ground truth tracks agree as to whether the pair of observations are in the same track or not. It is a commonly used metric for determining the accuracy of a clustering algorithm when the number of clusters is unknown (the tracking problem can be reduced to a clustering problem). Because the number of pairs of observations is exceedingly large, we calculate this using a Monte Carlo simulation.

Feed-forward neural networks are the standard, vanilla implementation of neural nets that maps a series of scalar inputs into one or many outputs. Here, we map a feature vector of observation information to the type of ship (tanker, pleasure craft, etc.). The neural network learns how to map inputs to outputs correctly by learning from many examples.
Classification accuracy is the fraction of inputs correctly mapped to output classes (i.e. the number of observations mapped to the correct ship type)



Boston University Slideshow Title Goes Here

College of Arts and Sciences

Methods: Dataset

▪ AIS data
▪ Observation: (timestamp, LON, LAT)
▪ 90% decimation
▪ Houston, Boston, Miami, Anchorage, Los Angeles
▪ Number of sensors: dozens
▪ Number of targets: dozens

Many-target, Many-sensor Ship Tracking and Classification 9/24/19

Presenter
Presentation Notes
These slides tells us how we actually make it work. AIS is a system in which ships self-report their locations at regular intervals. There are usually 60-90 seconds between observations. The self-report is a triple of (timestamp, LON, LAT), which is also how we anticipate data from floats will be formatted for Ocean of Things. Labels for tracking are the MMSI unique ship ID numbers and for neural network classification are the ship type numbers. Both of these are included with each observation as metadata. Any and all additional features used in neural network classification (we don’t use any additional features for tracking because the algorithm can be slow as is, esp. MHT) can be derived from the (timestamp, LON, LAT) triples. Velocity, for example, can be calculated between 2 observations very easily. 90% of the data is randomly discarded in order to simulate higher sparsity from float data. We run our experiments on data from Houston, Boston, Miami, Anchorage, and Los Angeles. In each dataset, there are dozens of ships. Because every ship self-reports its location, every target is also a sensor. In many-sensor tracking problems, sensors report observations at timestamps not aligned with other sensors. This is a huge complication to the tracking problem. Also, most tracking problems are much smaller than the problems we consider. One of our contributions is a tracking algorithm that can handle dozens of targets and sensors, with an unknown number of targets a priori.
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Methods: Tracking Algorithm

1. Sort observations by timestamp
2. For each observation x:

a. If x is far from the last observations of all tracks, start new track
b. Else, apply GNN or MHT based on last observations of all tracks
c. Remove all inactive tracks
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Presenter
Presentation Notes
This is the change to which we referred earlier, and is how we extend the uni-sensor GNN/MHT algorithms into a many-sensor environment.
The algorithm is intended to work on data that comes in continuously as a stream, e.g. from an array of floats. So, step 1 is only necessary if the data has been aggregated, or for testing the algorithm as we are doing here. In the future, we anticipate data coming in continuously.
Step 2 is where we make our first contributions. We extend the uni-sensor GNN/MHT algorithms into a many-sensor environment. We also make unique additions to MHT for our application space. For part a, “far” is an experimentally determined distance. For part b, we use either vanilla (unchanged) GNN or a modified MHT; the modification is as follows: reward tracklets with higher linearity, tracklets that maintain the same speed, and tracklets in which observations are close together. For part c, “inactive” means that no observation has been added to the track for N steps, where N is also experimentally determined.
One shortcoming of our algorithm is that it does not make stipulations for false alarm observations. False alarms will generally only have a small impact on our performance for a few reasons: if the false alarm occurs far away from other observations, the track will go inactive quickly; if the false alarm occurs amid other, real observations, the fact that observations are handled one at a time instead of simultaneously (i.e. many-sensor instead of uni-sensor) means that a false alarm can be incorporated into a track without disconnecting the track from future observations. However, false alarms may still cause observations to be assigned to incorrect tracks, and can hurt performance. It was beyond the scope of our work to perform experiments to test this hypothesis.
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Methods: Classification Algorithm

1. Run tracking algorithm
2. For each observation x:

a. Using tracks found, calculate additional features for x (velocity, turn 
rate, etc.)

b. Run feature vector for x through neural network
c. Neural network outputs ship type
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Presenter
Presentation Notes
Our next contribution is combining the tracking algorithm with a neural network to give users both tracking information and ship type information. We use a deep, feed-forward neural network to classify observations by ship type. The input to the neural network is a feature vector that is determined for each observation based on its predicted track data. This means that any errors in the output of the tracking algorithm adversely affect the performance of the neural network!
Training of the neural network is very straightforward, since there is a ton of AIS data available and there is a large amount of labeled data. We sample 250,000 observations from each of our locations and use those as training data. One thing to note, though, is that we determine the feature set used based on the results of a behavioral fingerprinting study of the data. Based on that study, we determined that the most useful features were: longitude, latitude, speed, turn rate, land ratio, and solar angle. Other features could have been included, but more features are more expensive to compute. We anticipate having limited computational power when we apply this algorithm to Ocean of Things data.
One shortcoming of this algorithm is that it does not aggregate the ship type classification between points on a track. So, we determine the ship type for every observation, not every track. It is actually quite trivial to aggregate classifications (e.g., choose the ship type that has the most “votes” by observation), but the problem is how to assess performance. If the track is not 100% correct, then it will contain observations from two or more ships. If those ships were of different types, then how could we evaluate the correctness of a track-level classification? So, we chose to measure performance by observation with the understanding that one could aggregate classification if one so chose.
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Experiments and Results

▪ Disagreement accuracy: not useful
▪ Track purity: very good
▪ Classification accuracy: very good, but Anchorage?
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Presenter
Presentation Notes
These slides tells us how we did. Here are our main results. The first two figures show the performance of our tracking algorithm. We find that disagreement accuracy is so consistently high (although we did see it go as low as 15% for a bad implementation of the GNN algorithm) that it does not actually give us any information about how our tracking algorithm is performing. The reason why these numbers are usually extremely high is that the metric is based on pairs of observations. Because there are many targets (clusters, ships), it is very likely that any given pair of points do not belong to the same target. So, even a trivial tracking algorithm that marks all observations as their own targets would perform well.
Track purity is the standard metric when it comes to measuring tracking algorithm performance. We see here that both tracking algorithms do well, but out implementation of MHT outperforms GNN in all cases. For GNN, track purity is always above 70%. For MHT, track purity is always above 80%. These results are very good for the many-target, many-sensor tracking problem.
Classification accuracy was very good with the notable exception of the Anchorage dataset. We hypothesize that this occurred because Anchorage has a vastly different latitude and climate compared to the remaining locations. The climate probably affected the types of ships in the region and their tracks. We are still investigating this phenomenon.
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Experiments and Results

▪ Tracks found not consistent with tracks present
▪ 2-approximation
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Presenter
Presentation Notes
One problem that we ran into was that the number of tracks found was not consistent with the number of tracks present in the dataset. The GNN and MHT tracking algorithms are designed for environments in which the number of tracks is known a priori. Because we will not know the number of targets in advance when we use our floats for Ocean of Things, we cannot give the algorithm that information now. The result is that the predicted number of targets varies widely and is not very closely related to the actual number of targets. This is a problem for two reasons: first, we want to know how many targets there are; and second, the track purity metric also fails if the number of predicted targets is very wrong. For instance, consider the trivial tracking algorithm: place every observation in its own track. This algorithm would, in fact, achieve a track purity of 100%. This problem has not been much discussed in the literature, because most tracking problems assume that the number of targets is known a priori. We cannot make that assumption.
We addressed this problem by enforcing tight limits on the accuracy of the number of predicted tracks. We forced our algorithm to predict the number of targets correctly within a factor of 2. This made the track purity metric much more meaningful and also kept us honest about the number of targets we actually find. In future work, we would like to tighten the bound from a 2-approximation to a 1.5-approximation.
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Shortcomings of Tracking Metrics: Disagreement

▪ Problem: always too high with many-targets
▪ Recommendation: do not use
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Presenter
Presentation Notes
Although disagreement distance and disagreement accuracy are common metrics in clustering and cluster aggregation, we do not find them appropriate for the many-target tracking problem. In fact, once there are a large number of targets (clusters), this metric is not useful because it is overly optimistic.
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Shortcomings of Tracking Metrics: Track Purity

▪ Problem: when number of targets is unknown a priori, 
even bad tracking algorithms can score highly

▪ Recommendation: force 2-approximation (or 
better)
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Presenter
Presentation Notes
The way we forced a 2-approximation was by testing our algorithms on a variety of datasets and ensuring that we were always correct within a factor of 2. There is actually no strict guarantee that our algorithm is correct within a factor of 2, but experimental results over many repeated trials indicate that we are always in bounds. For future work, one might investigate a means of making an actual guarantee that the tracking algorithm will always be correct within a factor of 2.



Boston University Slideshow Title Goes Here

College of Arts and Sciences

Conclusion

▪ Many-target, many-sensor tracker
▪ High track purity
▪ High classification accuracy

▪ MHT is more accurate than GNN, but slower
▪ Contributions:

▪ Tracking and deep learning
▪ Many-target, many-sensor
▪ Real-world data
▪ Tracking metrics
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Presenter
Presentation Notes
This slide summarizes our work and main contributions. The conclusion in the paper speaks to this very succinctly.
Contributions:
Combination of GNN/MHT tracking with deep neural network
Tuning of traditional tracking algorithms to work with many-target, many-sensor environment
Demonstrate superiority of MHT over GNN on real-world data (most work in tracking is done on simulated data!)
Improvements to tracking metrics
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