Message Scheduling for Performant, Many-Core Belief Propagation

Mark Van der Merwe, Vinu Joseph, Ganesh Gopalakrishnan

School of Computing, University of Utah

Overview

- What is Belief Propagation (BP)?
 - The Algorithm.
 - Performance: Convergence, Speed, Accuracy.
 - Message Scheduling and its Effect on Performance.
- Frontier-Based BP on the GPU.
 - Residual-Based Message Scheduling on the GPU.
 - Randomized Message Scheduling on the GPU.

Probabilistic Graphical Models

- Encode a joint distribution over a set of variables.
- Vertices are random variables, edges are probabilistic relationships.

Source: Understanding BP and its Generalizations, Jonathan Yedidia, William Freeman, Yair Weisss

Markov Random Field (MRF)

- Undirected Graphical Model:
 - Random Variables:
 - $X = \{X_1, ..., X_n\}; X_i \in A_i$
 - Undirected Graph: G = (V, E)
 - Parameterized by: $\{\psi_i : A_i \to \mathbb{R}^+ | i \in V\}$
 - $\{\psi_{i,j}: A_i \times A_j \to \mathbb{R}^+ | (i,j) \in E\}$
 - Joint Distribution:
 - $P(x_1, \dots, x_N) \propto \prod_{i \in V} \psi_i(x_i) \prod_{\{i,j\} \in E} \psi_{i,j}(x_i, x_j)$

Inference

• Derive vertices's marginal distributions.

$$P(x_1, ..., x_N) \propto \prod_{i \in V} \psi_i(x_i) \prod_{\{i,j\} \in E} \psi_{i,j}(x_i, x_j)$$

$$\downarrow$$

$$P(x_i) \forall i \in V$$

• In general, exact inference is intractable. Enter approximate inference.

Belief Propagation

- Message Passing Algorithm for Approximate Inference:
- Messages indicate a vertex's belief about another vertex:

$$m_{i \to j}(x_j) \propto \sum_{x_i \in A_i} \psi_{i,j}(x_i, x_j) \psi_i(x_i) \prod_{k \in \Gamma_i \setminus j} m_{k \to i}(x_i)$$

• Local beliefs updated according to messages:

$$P(X_i = x_i) \approx b_i(x_i) \propto \psi_i(x_i) \prod_{k \in \Gamma_i} m_{k \to i}(x_i)$$

- Exact on tree graphs; approximate on "loopy" graphs.
- Iterative Convergent Algorithm.

Belief Propagation

- BP enables highly general inference over complex systems.
- Parallelism is key:
 - Faster is better!! Enable real-time applications (e.g. robotics).
 - Larger scale is better!! Enable internet-age modeling (e.g. hyperlink network).

GPU BP!!

Performant Belief Propagation

• What defines *performant* Belief Propagation?

- 1. Accurate are the results close to the true marginals?
- 2. Convergent does the algorithm complete?
- 3. Fast how fast does the algorithm complete?

• In what order should the messages be passed to enable best performance?

Loopy Belief Propagation (LBP) (AKA, Synchronous BP)

Can converge at times, but fails to on many graphs [1,2].

Asynchronous BP Better convergence than LBP [3]!

[1] Loopy BP for Approximate Inference, Kevin Murphy, Yair Weiss, Michael Jordan
 [2] Sufficient Conditions for Convergence of the Sum-Product Algorithm, Joris Mooij, Hilbert Kappen
 [3] Residual Belief Propagation, Gal Elidan, Ian McGraw, Daphne Koller

- Intuition: messages that don't update much are less important.
- Simple selection metric [3]:

$$r(m_i^t) = ||f_{BP}(m^t)_i - m_i^t||$$

• Select next message with Priority Queue: greedy scheduling.

Residual BP Better convergence than LBP/ABP [3]!

Select vertices; Residual Splash [4].

[3] Residual Belief Propagation, Gal Elidan, Ian McGraw, Daphne Koller [4] Residual Splash for Optimally Parallelizing Belief Propagation, Joseph Gonzalez, Yucheng Low, Carlos Guestrin

Parallelism

Frontier-Based BP

- GPUs are powerful lots of parallelism.
- Thrive with bulk parallel, synchronous operations.
- Make a frontier of messages to update in bulk synchronous step.
- Changing the size/selection of this frontier lets us explore message scheduling on GPU.

GPU LBP

Frontier = All Messages

GPU Residual BP

Frontier = Top-*k*

Implementation

- Implement GPU LBP, RBP, RS using Nvidia CUDA.
 - Simple Adjacency List format.
 - Edge/Vertex assigned IDs threads assigned subset to update.
- RBP/RS: Select k via a multiplier p.
- Implement Serial RBP (SRBP) for baseline.
- Hardware:
 - GPU: Nvidia Tesla V100
 - CPU: Intel Xeon

Experiments

• Ising Grids (NxN binary grids):

1

$$\psi_{i}(x_{i}) = \begin{cases} p & x_{i} = 0\\ 1 - p & x_{i} = 1 \end{cases}; p \in [0, 1]$$
$$\psi_{i,j}(x_{i}, x_{j}) = \begin{cases} e^{\lambda C} & x_{i} = x_{j}\\ e^{-\lambda C} & x_{i} \neq x_{j} \end{cases}; \lambda \in [-0.5, 0.5], C \in \mathbb{R}$$

• N={100,200}, C=2.5, 20 graphs at each setting.

Source: https://personal.utdallas.edu/~nrr150130/ising_demo.html

lsing 100x100, C=2.5

OF UTAH®

lsing 100x100, C=2.5

OF UTAH®

lsing 200x200, C=2.5

GPU RBP

p = 1/256

Ising $200 \times 200, C = 2.5$

UNIVERSITY

OF UTAH®

THE

 $p = 1/2\overline{56}$

> 4.54x

Ising $200 \times 200, C = 2.5$

> 16.08x

Where are we now?

The hypothesized tradeoff exists! But have we effectively exploited it?

- 1. Accurate are the results close to the true marginals?
- 2. Convergent does the algorithm complete?
- 3. Fast how fast does the algorithm complete?

 \checkmark

Revisiting GPU Residual BP

Hypothesis:

Varying the parallelism affects performance *more* than specific selection of messages in a many-core environment.

Randomized BP

OF UTAH

Idea: keep parallelism high when messages are converging quickly, make it low when they stop converging.

$$EdgeRatio = \frac{NewEdgeCount}{OldEdgeCount}$$

$$p = \begin{cases} p_{low} & EdgeRatio > 0.9\\ p_{high} & o.w. \end{cases}$$

Like for RBP/RS adjusting *p* adjusts parallelism. We lock high to 1.0.

Ising 100x100, C=2.5

OF UTAH®

Ising 100x100, C=2.5

OF UTAH®

Ising 200x200, C=2.5

RnBP Additional Results

[1] Approximate Inference and Protein-Folding, Chen Yanover, Yair Weiss

OF UTAH[®]

RnBP Additional Results

RnBP Speedups

Accuracy Comparison to SRBP/Variable Elimination

Dataset	Settings	SRBP Speedup
Ising $100 \times 100, C = 2$	Low P = 0.7	2203.58x
Ising $100 \times 100, C = 2.5$	Low P = 0.7	1135.05x
Ising $100 \times 100, C = 3$	Low P = 0.1	61.28x
Ising $200 \times 200, C = 2.5$	Low P = 0.7	> 529.997 x
Chain 100000, $C = 10$	Low P = 0.7	> 1676.92x

Where are we now?

- 1. Accurate are the results close to the true marginals?
- 2. Convergent does the algorithm complete?
- 3. Fast how fast does the algorithm complete?

 \checkmark

Where are we now?

Parallelism

Conclusion

Performance (Convergence + Speed)

Parallelism

Thank You!

or http://tiny.cc/bp-gpu

Slides + Code

