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I|Ii|- Progress in Computer Vision
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I||i|- Progress in Natural Language Processing

The estimated costs of training a model

Date of original paper Energy consumption (kWh) Carbon footprint (Ibs of CO2e) Cloud compute cost (USD)

Transformer Jun, 2017 27 26 $41-8140
(65M
parameters)

Transformer Jun, 2017 201 192 $289-$981
(213M
parameters)

ELMo Feb, 2018 275 262 $433-$1,472

BERT (110M Oct, 2018 1,507 1,438 $3,751-$12,571
parameters)

Transformer Jan, 2019 656,347 626,155 $§942,973-$3,201,722
(213M

parameters) w/

neural

architecture

search

GPT-2 Feb, 2019 - - $12,902-$43,008
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N .
III|| Progress in Reinforcement learning

AlphaGo Zero

.")-

29 million games over 40 days of training
Estimated compute cost: $35,354,222
Estimated > 6000 TPU'’s

“[This] is an unattainable level of compute for the majority of the research community. When
combined with the unavailability of code and models, the result is that the approach is very
difficult, if not impossible, to reproduce, study, improve upon, and extend”

Facebook, on replicating AlphaGo Zero results
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I|Ii|- Motivation

Ongoing Challenge: How can we train larger, more powerful networks with

fewer computational resources?
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Illir Previous Work on Sparse Neural Networks

e Optimal Brain Damage!" [ Train network }
o Prunes weights based on
second-derivative information

Evaluate |mportanoe
of neurons

&=

e [earning both Weights and Connections for
Efficient Neural Networks!?
o lteratively prunes and retrains network

Remove the least
|mportant neuron

e Other methods: low-rank approximation’*,

variational dropout/¥, . .. { Fine-tuning ]

yes
Continue pruning? :y
& no

Stop pruning
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[4] Molchanov et. al, Variational Dropout sparsifies deep neural networks. 2017
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I||i|- Previous Work

Train network

e Optimal Brain Damage!" ‘

o Prunes weights based on
second-derivative information

Evaluate |mportanoe
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e Learning both Weights and Connections for [
Efficient Neural Networks!! {

o Iteratively prunes and retrains network lmportant neuron
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[3] Sainath et. al, Low-rank matrix factorization for deep neural network training with high-dimensional output targets. in ICASSP, 2013
[4] Molchanov et. al, Variational Dropout sparsifies deep neural networks. 2017
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I|Ii|- Previous Work

e Much research has been done pruning pretrained networks to become sparse, for
purposes of model compression, deployment on embedded devices, etc.
e Little research has been done training from scratch on sparse network structures

e One example: Deep Expander Networks!"!

o Replace connections with random and explicit expander graphs to create trainable
sparse networks with strong connectivity properties

Slide - 15 [1] Prabhu et. al, Deep Expander Networks: Efficient Deep Networks from Graph Theory
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e Much research has been done pruning pretrained networks to become sparse, for
purposes of model compression, deployment on embedded devices, etc.
e Little research has been done training from scratch on sparse network structures

e One example: Deep Expander Networks!"!

o Replace connections with random and explicit expander graphs to create trainable
sparse networks with strong connectivity properties

Our contribution: Development and evaluation of pruning-based and
structurally-sparse trainable networks
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Illil- Overview of Approach

Techniques

First approach: Pruning

e Prune the network during/after training to learn
a sparse network structure

e Initialize network with pruned network as
structure and train

Second approach: RadiX-Nets

e Ryan Robinett's RadiX-Nets provide theoretical
guarantees of sparsity, connectivity properties

e Train RadiX-Nets and compare to dense
training

Implementation

Experiments done using TensorFlow
Used Lenet-5 and Lenet 300-100 networks
Tested on MNIST, CIFAR-10 datasets
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Designing a trainable sparse network

Pruning

e Train a dense network, then prune connections to obtain
sparse network

e Important connections, structure is preserved

e Two pruning methods: one-time and iterative pruning
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|||i|- Designing a trainable sparse network

One-time Pruning
e Prune weights below threshold: weights[np.abs(weights) < threshold] = ©
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|||i|- Designing a trainable sparse network

Iterative Pruning

e lteratively cycle between pruning
neurons below threshold and
retraining remaining neurons

10

0.8

e Modified technique: prune
network to match monotonically
increasing sparsity function s(f)

0.6

AN

Prune every 200 steps

0.4

Sparsity

e Able to achieve much higher
sparsity than one-time pruning
without loss in accuracy (>95%
vs 50%)

0.2

Training step
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I|Ii|- Generating a sparse network to train on

Second method: RadiX-Nets o ;

e Building off Prabhu et. al's Deep Expander Networks

e Uses mixed radix systems to create sparse networks with %ﬁ%:/ﬁ@@.
provable connectivity, sparsity, and symmetry properties \

ol o/ @

Ryan Robinett created RadiX-Nets as an improvement over

expander networks Above: A two layer RadiX-net with
radix values (2, 2, 2) and 75% sparsity.
Can be designed to fit different network sizes, depths, and Below: The random equivalent

sparsity levels while retaining properties
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RadiX-Nets

* Given set of radices, connect neurons in adjacent layers at regular intervals
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U RadiX-Nets
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A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.
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U RadiX-Nets
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A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.
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U RadiX-Nets
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A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.
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U RadiX-Nets
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A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.
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U RadiX-Nets
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A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.
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U RadiX-Nets
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A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.
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U RadiX-Nets
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A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.
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U RadiX-Nets
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A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.
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U RadiX-Nets
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A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.
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U RadiX-Nets
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A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.
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U RadiX-Nets
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A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.
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U RadiX-Nets
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A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.
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A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.
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U RadiX-Nets

A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.
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U RadiX-Nets
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A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.
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U RadiX-Nets

A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.
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Nhir RadiX-Nets
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Fig. 5. The final step of RadiX-Net construction involves Kronecker products of adjacency submatrices of mixed-radix topologies and adjacency submatrices
of an arbitrary dense deep neural network with the same number of layers. The number of vertices in each layer of the dense deep neural networks provides
an additional set of parameters by which a wide range of RadiX-Nets can be defined.
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RadiX-Nets
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|||i|- Pruning implementation details

e Lenet 5 trained on MNIST and CIFAR-10
e Lenet 300-100 trained only on MNIST
e Pruned with one-time and iterative pruning to 0, 50, 75, 90, 95, and 99 percent sparsity

e Implemented in Tensorflow using mask variables to ignore pruned/nonexistent
connections

Trained
sparse net

Iter rune set as
p mask for train
new net Sparse
—) One-time prune —)

Dense net
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|||i|- Networks used

C1: feature maps S2: feature maps  C3: feature maps S4: feature maps
6@28x28 6@14x14 16@10x10 16@5x5

Lenet 5 NPT \05;;*0\'9' - OUTPUT: ayer
e 2 convolutional layers
e 2 subsampling layers

e 1 fully-connected layer D\ il =l =
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@ | @ 1
Lenet 300-100 input 8 O 8 output
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|||i|- RadiX-Net implementation details

e Same networks, datasets
e Created sparse versions of each network using random and/or explicit RadiX-nets

e Compared keeping number of connections constant while varying sparsity and
varying sparsity over network of same size

e Example: for Lenet 300-100, replaced fully connected layers with RadiX-Net with
N =[10, 10], B =[30, 8, 1] = 90% sparse

. Random
Explicit layer, Random layer, same
Exolicit | same total layer, same total
- Xplicit layer, connections ’ :
Original net same size size connections

dEiHEEY
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Results: One-Time Pruning
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|||i|- Results: Iterative Pruning

Layer pruning weight threshold over time

Model accuracy over time for
Lenet 5 on CIFAR-10

Layer sparsity over time

0.000
0.200
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I|Ii|- Results: Training on pruned network structure

Lenet-300-100 Pruning Retrained Accuracies
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I|Ii|- Results: Training on pruned network structure

Lenet-5 Pruning Retrained Accuracies

@ Original @ One-Time retrained @ Iterative original @ Iterative retrained
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I|Ii|- Lenet-5 training on pruned network structure

Fig. 8. From top left to bottom right, the result of training Lenet-5 on MNIST with pruned sparse structures of 0.75, 0.9, 0.95, and 0.99 percent sparsity.
The figures show the instability of training on the sparse pruned network considering multiple Lenet-5 runs. Different colors represent retraining on the same
sparse structure with everything identical except for different weight initializations.
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I||i|- Results: RadiX-Net Training

Lenet 300-100 RadiX-Net Training (MNIST)
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Results: RadiX-Net Training

Accuracy (%)
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Results: RadiX-Net Training

Accuracy (%)
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I|Ii|- Outline

e Introduction
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|||i|- Interpretation of Results

e RadiX-Net sparse networks work better with Lenet 5 than Lenet 300-100

e Better performance with lower sparsity

e Extreme levels of sparsity exhibits instability in training

e Pruning-based sparse networks work better with Lenet 300-100 than Lenet 5
e Random and explicit RadiX-Net layers behave the same

e For both RadiX-Net and pruning-based networks, performance depends on network at
hand
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I|Ii|- Summary, Future Work and Next Steps

e Need to evaluate performance on larger networks to fully characterize each technique’s
behavior

e Investigating structure of pruned network

e Develop more fine-tuned sparse strategies for replacing more specialized layers such as
convolutional layers, attention layers, etc.

e Utilize sparse matrix libraries for matrix multiplication

Slide - 62



