
Training Behavior of Sparse Neural Network
Topologies

Simon Alford, Ryan Robinett, Lauren Milechin, Jeremy Kepner

Slide - 2

Outline

• Introduction

• Approach

• Results

• Interpretation and Summary

Slide - 3

• Quality and quantity of data

Limiting factors confronting Deep Learning

Slide - 4

Limiting factors confronting Deep Learning

• Quality and quantity of data

• Techniques, network design, etc.

Slide - 5

Limiting factors confronting Deep Learning

• Quality and quantity of data

• Techniques, network design, etc.

• Computational demands vs resources available

Slide - 6

Limiting factors confronting Deep Learning

• Quality and quantity of data

• Techniques, network design, etc.

• Computational demands vs resources available

Slide - 7

Progress in Computer Vision

http://sqlml.azurewebsites.net/2017/09/12/convolutional-neural-network/

http://sqlml.azurewebsites.net/2017/09/12/convolutional-neural-network/

Slide - 8

Progress in Natural Language Processing

Date of original paper Energy consumption (kWh) Carbon footprint (lbs of CO2e) Cloud compute cost (USD)

Transformer
(65M
parameters)

Jun, 2017 27 26 $41-$140

Transformer
(213M
parameters)

Jun, 2017 201 192 $289-$981

ELMo Feb, 2018 275 262 $433-$1,472

BERT (110M
parameters)

Oct, 2018 1,507 1,438 $3,751-$12,571

Transformer
(213M
parameters) w/
neural
architecture
search

Jan, 2019 656,347 626,155 $942,973-$3,201,722

GPT-2 Feb, 2019 - - $12,902-$43,008

The estimated costs of training a model

https://www.technologyreview.com/s/613630/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/

https://www.technologyreview.com/s/613630/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/

Slide - 9

AlphaGo Zero

● 29 million games over 40 days of training
● Estimated compute cost: $35,354,222
● Estimated > 6000 TPU’s

● “[This] is an unattainable level of compute for the majority of the research community. When
combined with the unavailability of code and models, the result is that the approach is very
difficult, if not impossible, to reproduce, study, improve upon, and extend”

Facebook, on replicating AlphaGo Zero results

Progress in Reinforcement learning

https://www.yuzeh.com/data/agz-cost.html

https://www.yuzeh.com/data/agz-cost.html

Slide - 10

Motivation

Ongoing Challenge: How can we train larger, more powerful networks with

fewer computational resources?

Slide - 11

Motivation

Ongoing Challenge: How can we train larger, more powerful networks with

fewer computational resources?

Idea: “Go sparse"

Fully connected Sparse

● Leverage preexisting optimizations using
sparse matrices

● Scale with number of connections instead of
number of neurons

● There may exist sparse network topologies
which train as well or better than dense

Slide - 12

Previous Work on Sparse Neural Networks

● Optimal Brain Damage[1]

○ Prunes weights based on
second-derivative information

● Learning both Weights and Connections for
Efficient Neural Networks[2]

○ Iteratively prunes and retrains network

● Other methods: low-rank approximation[3],
variational dropout[4], . . .

Train network

[1] LeCun et. al, Optimal brain damage. In NIPS, 1989. [2] Han et. al, Learning both weights and connections for efficient neural networks. In NIPS, 2015
[3] Sainath et. al, Low-rank matrix factorization for deep neural network training with high-dimensional output targets. in ICASSP, 2013
[4] Molchanov et. al, Variational Dropout sparsifies deep neural networks. 2017

Slide - 13

Previous Work

● Optimal Brain Damage[1]

○ Prunes weights based on
second-derivative information

● Learning both Weights and Connections for
Efficient Neural Networks[2]

○ Iteratively prunes and retrains network

● Other methods: low-rank approximation[3],
variational dropout[4], . . .

… Problem?

Train network

[1] LeCun et. al, Optimal brain damage. In NIPS, 1989. [2] Han et. al, Learning both weights and connections for efficient neural networks. In NIPS, 2015
[3] Sainath et. al, Low-rank matrix factorization for deep neural network training with high-dimensional output targets. in ICASSP, 2013
[4] Molchanov et. al, Variational Dropout sparsifies deep neural networks. 2017

Slide - 14

Previous Work

● Optimal Brain Damage[1]

○ Prunes weights based on
second-derivative information

● Learning both Weights and Connections for
Efficient Neural Networks[2]

○ Iteratively prunes and retrains network

● Other methods: low-rank approximation[3],
variational dropout[4], . . .

… Problem? Start by training dense

Train network

[1] LeCun et. al, Optimal brain damage. In NIPS, 1989. [2] Han et. al, Learning both weights and connections for efficient neural networks. In NIPS, 2015
[3] Sainath et. al, Low-rank matrix factorization for deep neural network training with high-dimensional output targets. in ICASSP, 2013
[4] Molchanov et. al, Variational Dropout sparsifies deep neural networks. 2017

● Can’t rely on sparsity to yield computation
savings for training

Slide - 15

● Much research has been done pruning pretrained networks to become sparse, for
purposes of model compression, deployment on embedded devices, etc.

● Little research has been done training from scratch on sparse network structures

● One example: Deep Expander Networks[1]

○ Replace connections with random and explicit expander graphs to create trainable
sparse networks with strong connectivity properties

Previous Work

[1] Prabhu et. al, Deep Expander Networks: Efficient Deep Networks from Graph Theory

Slide - 16

● Much research has been done pruning pretrained networks to become sparse, for
purposes of model compression, deployment on embedded devices, etc.

● Little research has been done training from scratch on sparse network structures

● One example: Deep Expander Networks[1]

○ Replace connections with random and explicit expander graphs to create trainable
sparse networks with strong connectivity properties

Previous Work

[1] LeCun et. al, Optimal brain damage. In NIPS, 1989. [2] Han et. al, Learning both weights and connections for efficient neural networks. In NIPS, 2015
[3] Prabhu et. al, Deep Expander Networks: Efficient Deep Networks from Graph Theory

Our contribution: Development and evaluation of pruning-based and
structurally-sparse trainable networks

Slide - 17

Overview of Approach

First approach: Pruning
● Prune the network during/after training to learn

a sparse network structure
● Initialize network with pruned network as

structure and train

Second approach: RadiX-Nets
● Ryan Robinett’s RadiX-Nets provide theoretical

guarantees of sparsity, connectivity properties
● Train RadiX-Nets and compare to dense

training

Techniques Implementation
● Experiments done using TensorFlow
● Used Lenet-5 and Lenet 300-100 networks
● Tested on MNIST, CIFAR-10 datasets

MNIST CIFAR-10

Slide - 18

Outline

• Introduction

• Approach

• Results

• Interpretation and Summary

Slide - 19

Designing a trainable sparse network

Pruning
● Train a dense network, then prune connections to obtain

sparse network

● Important connections, structure is preserved

● Two pruning methods: one-time and iterative pruning

Slide - 20

Designing a trainable sparse network

One-time Pruning
● Prune weights below threshold: weights[np.abs(weights) < threshold] = 0

Slide - 21

Designing a trainable sparse network

One-time Pruning
● Prune weights below threshold: weights[np.abs(weights) < threshold] = 0

Slide - 22

Designing a trainable sparse network

Iterative Pruning
● Iteratively cycle between pruning

neurons below threshold and
retraining remaining neurons

● Modified technique: prune
network to match monotonically
increasing sparsity function s(t)

● Able to achieve much higher
sparsity than one-time pruning
without loss in accuracy (>95%
vs 50%)

S
pa

rs
ity

Training step

Prune every 200 steps

Slide - 23

Second method: RadiX-Nets
● Building off Prabhu et. al’s Deep Expander Networks

● Uses mixed radix systems to create sparse networks with
provable connectivity, sparsity, and symmetry properties

● Ryan Robinett created RadiX-Nets as an improvement over
expander networks

● Can be designed to fit different network sizes, depths, and
sparsity levels while retaining properties

Generating a sparse network to train on

Above: A two layer RadiX-net with
radix values (2, 2, 2) and 75% sparsity.
Below: The random equivalent

Slide - 24

RadiX-Nets

• Given set of radices, connect neurons in adjacent layers at regular intervals

Robinett and Kepner, Sparse, symmetric neural network topologies for sparse training. In MIT URTC, 2018.

Slide - 25

RadiX-Nets

A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.

Slide - 26

RadiX-Nets

A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.

Slide - 27

RadiX-Nets

A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.

Slide - 28

RadiX-Nets

A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.

Slide - 29

RadiX-Nets

A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.

Slide - 30

RadiX-Nets

A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.

Slide - 31

RadiX-Nets

A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.

Slide - 32

RadiX-Nets

A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.

Slide - 33

RadiX-Nets

A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.

Slide - 34

RadiX-Nets

A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.

Slide - 35

RadiX-Nets

A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.

Slide - 36

RadiX-Nets

A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.

Slide - 37

RadiX-Nets

A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.

Slide - 38

RadiX-Nets

A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.

Slide - 39

RadiX-Nets

A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.

Slide - 40

RadiX-Nets

A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.

Slide - 41

RadiX-Nets

A two layer RadiX-net with radix values (2, 2, 2) and 75% sparsity.

Slide - 42

RadiX-Nets

Slide - 43

RadiX-Nets

Kronecker
Product

Slide - 44

RadiX-Nets

Kronecker
Product

Slide - 45

RadiX-Nets

Kronecker
Product

Slide - 46

RadiX-Nets

Kronecker
Product

Slide - 47

RadiX-Nets

Kronecker
Product

Kronecker-ed
network maintains
50% sparsity

Slide - 48

● Lenet 5 trained on MNIST and CIFAR-10

● Lenet 300-100 trained only on MNIST

● Pruned with one-time and iterative pruning to 0, 50, 75, 90, 95, and 99 percent sparsity

● Implemented in Tensorflow using mask variables to ignore pruned/nonexistent
connections

Pruning implementation details

set as
mask for
new net

One-time prune

 Iter prune

- or -

Dense net Trained
sparse net

train
sparse

Slide - 49

Networks used

Lenet 5
● 2 convolutional layers
● 2 subsampling layers
● 1 fully-connected layer

Lenet 300-100
● 2 fully-connected layers

Slide - 50

● Same networks, datasets

● Created sparse versions of each network using random and/or explicit RadiX-nets

● Compared keeping number of connections constant while varying sparsity and
varying sparsity over network of same size

● Example: for Lenet 300-100, replaced fully connected layers with RadiX-Net with
N = [10, 10], B = [30, 8, 1] = 90% sparse

RadiX-Net implementation details

Original net

Random
layer, same

size

Random
layer, same

total
connections

Explicit layer,
same size

Explicit layer,
same total

connections

Slide - 51

Outline

• Introduction

• Approach

• Results

• Interpretation and Summary

Slide - 52

Results: One-Time Pruning

Slide - 53

Results: Iterative Pruning

Model accuracy over time for
Lenet 5 on CIFAR-10

Layer pruning weight threshold over time

Layer sparsity over time

Slide - 54

Results: Training on pruned network structure

Slide - 55

Results: Training on pruned network structure

Slide - 56

Lenet-5 training on pruned network structure

Slide - 57

Results: RadiX-Net Training

Same size
Fewer connections

Same connections
Bigger size

Slide - 58

Results: RadiX-Net Training

Same connections
Bigger size

Same size
Fewer connections

Slide - 59

Results: RadiX-Net Training

Same connections
Bigger size

Same size
Fewer connections

Slide - 60

Outline

• Introduction

• Approach

• Results

• Interpretation and Summary

Slide - 61

● RadiX-Net sparse networks work better with Lenet 5 than Lenet 300-100
● Better performance with lower sparsity
● Extreme levels of sparsity exhibits instability in training
● Pruning-based sparse networks work better with Lenet 300-100 than Lenet 5
● Random and explicit RadiX-Net layers behave the same
● For both RadiX-Net and pruning-based networks, performance depends on network at

hand

Interpretation of Results

Slide - 62

● Need to evaluate performance on larger networks to fully characterize each technique’s
behavior

● Investigating structure of pruned network

● Develop more fine-tuned sparse strategies for replacing more specialized layers such as
convolutional layers, attention layers, etc.

● Utilize sparse matrix libraries for matrix multiplication

Summary, Future Work and Next Steps

