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Progress in Computer Vision

http://sqlml.azurewebsites.net/2017/09/12/convolutional-neural-network/

http://sqlml.azurewebsites.net/2017/09/12/convolutional-neural-network/
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Progress in Natural Language Processing

Date of original paper Energy consumption (kWh) Carbon footprint (lbs of CO2e) Cloud compute cost (USD)

Transformer 
(65M 
parameters)

Jun, 2017 27 26 $41-$140

Transformer 
(213M 
parameters)

Jun, 2017 201 192 $289-$981

ELMo Feb, 2018 275 262 $433-$1,472

BERT (110M 
parameters)

Oct, 2018 1,507 1,438 $3,751-$12,571

Transformer 
(213M 
parameters) w/ 
neural 
architecture 
search

Jan, 2019 656,347 626,155 $942,973-$3,201,722

GPT-2 Feb, 2019 - - $12,902-$43,008

The estimated costs of training a model

https://www.technologyreview.com/s/613630/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/

https://www.technologyreview.com/s/613630/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
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AlphaGo Zero 

● 29 million games over 40 days of training
● Estimated compute cost: $35,354,222
● Estimated > 6000 TPU’s

● “[This] is an unattainable level of compute for the majority of the research community. When 
combined with the unavailability of code and models, the result is that the approach is very 
difficult, if not impossible, to reproduce, study, improve upon, and extend”

Facebook, on replicating AlphaGo Zero results

Progress in Reinforcement learning

https://www.yuzeh.com/data/agz-cost.html

https://www.yuzeh.com/data/agz-cost.html
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Motivation

Ongoing Challenge: How can we train larger, more powerful networks with 

fewer computational resources? 

Idea: “Go sparse"

Fully connected Sparse

● Leverage preexisting optimizations using 
sparse matrices

● Scale with number of connections instead of 
number of neurons

● There may exist sparse network topologies 
which train as well or better than dense
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Previous Work on Sparse Neural Networks

● Optimal Brain Damage[1]

○ Prunes weights based on 
second-derivative information

● Learning both Weights and Connections for 
Efficient Neural Networks[2]

○ Iteratively prunes and retrains network

● Other methods: low-rank approximation[3], 
variational dropout[4],  . . . 

Train network

[1] LeCun et. al, Optimal brain damage. In NIPS, 1989. [2] Han et. al, Learning both weights and connections for efficient neural networks. In NIPS, 2015
[3] Sainath  et. al, Low-rank matrix factorization for deep neural network training with high-dimensional output targets. in ICASSP, 2013
[4] Molchanov et. al, Variational Dropout sparsifies deep neural networks. 2017
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Previous Work

● Optimal Brain Damage[1]

○ Prunes weights based on 
second-derivative information

● Learning both Weights and Connections for 
Efficient Neural Networks[2]

○ Iteratively prunes and retrains network

● Other methods: low-rank approximation[3], 
variational dropout[4],  . . . 

… Problem? Start by training dense

Train network

[1] LeCun et. al, Optimal brain damage. In NIPS, 1989. [2] Han et. al, Learning both weights and connections for efficient neural networks. In NIPS, 2015
[3] Sainath  et. al, Low-rank matrix factorization for deep neural network training with high-dimensional output targets. in ICASSP, 2013
[4] Molchanov et. al, Variational Dropout sparsifies deep neural networks. 2017

● Can’t rely on sparsity to yield computation 
savings for training
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● Much research has been done pruning pretrained networks to become sparse, for 
purposes of model compression, deployment on embedded devices, etc.

● Little research has been done training from scratch on sparse network structures

● One example: Deep Expander Networks[1]

○ Replace connections with random and explicit expander graphs to create trainable 
sparse networks with strong connectivity properties

Previous Work

[1] Prabhu et. al, Deep Expander Networks: Efficient Deep Networks from Graph Theory
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● Much research has been done pruning pretrained networks to become sparse, for 
purposes of model compression, deployment on embedded devices, etc.

● Little research has been done training from scratch on sparse network structures

● One example: Deep Expander Networks[1]

○ Replace connections with random and explicit expander graphs to create trainable 
sparse networks with strong connectivity properties

Previous Work

[1] LeCun et. al, Optimal brain damage. In NIPS, 1989. [2] Han et. al, Learning both weights and connections for efficient neural networks. In NIPS, 2015
[3] Prabhu et. al, Deep Expander Networks: Efficient Deep Networks from Graph Theory

Our contribution: Development and evaluation of pruning-based and 
structurally-sparse trainable networks
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Overview of Approach

First approach: Pruning
● Prune the network during/after training to learn 

a sparse network structure
● Initialize network with pruned network as 

structure and train

Second approach: RadiX-Nets
● Ryan Robinett’s RadiX-Nets provide theoretical 

guarantees of sparsity, connectivity properties
● Train RadiX-Nets and compare to dense 

training

Techniques Implementation
● Experiments done using TensorFlow
● Used Lenet-5 and Lenet 300-100 networks
● Tested on MNIST, CIFAR-10 datasets

MNIST CIFAR-10
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Designing a trainable sparse network

Pruning
● Train a dense network, then prune connections to obtain 

sparse network

● Important connections, structure is preserved

● Two pruning methods: one-time and iterative pruning
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Designing a trainable sparse network

One-time Pruning
● Prune weights below threshold: weights[np.abs(weights) < threshold] = 0
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Designing a trainable sparse network

Iterative Pruning
● Iteratively cycle between pruning 

neurons below threshold and 
retraining remaining neurons 

● Modified technique: prune 
network to match monotonically 
increasing sparsity function s(t)

● Able to achieve much higher 
sparsity than one-time pruning 
without loss in accuracy (>95% 
vs 50%)

S
pa

rs
ity

Training step

Prune every 200 steps



Slide - 23

Second method: RadiX-Nets
● Building off Prabhu et. al’s Deep Expander Networks

● Uses mixed radix systems to create sparse networks with 
provable connectivity, sparsity, and symmetry properties

● Ryan Robinett created RadiX-Nets as an improvement over 
expander networks 

● Can be designed to fit different network sizes, depths, and 
sparsity levels while retaining properties

Generating a sparse network to train on

Above: A two layer RadiX-net with 
radix values (2, 2, 2) and 75% sparsity.
Below: The random equivalent
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RadiX-Nets

• Given set of radices, connect neurons in adjacent layers at regular intervals

Robinett and Kepner, Sparse, symmetric neural network topologies for sparse training. In MIT URTC, 2018.
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RadiX-Nets
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RadiX-Nets
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RadiX-Nets

Kronecker
Product
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RadiX-Nets

Kronecker
Product

Kronecker-ed 
network maintains 
50% sparsity
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● Lenet 5 trained on MNIST and CIFAR-10

● Lenet 300-100 trained only on MNIST

● Pruned with one-time and iterative pruning to 0, 50, 75, 90, 95, and 99 percent sparsity

● Implemented in Tensorflow using mask variables to ignore pruned/nonexistent 
connections

Pruning implementation details

set as 
mask for 
new net

One-time prune

 Iter prune

- or -

Dense net Trained 
sparse net

train 
sparse
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Networks used

Lenet 5
● 2 convolutional layers
● 2 subsampling layers
● 1 fully-connected layer

Lenet 300-100
● 2 fully-connected layers
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● Same networks, datasets

● Created sparse versions of each network using random and/or explicit RadiX-nets

● Compared keeping number of connections constant while varying sparsity and 
varying sparsity over network of same size

● Example: for Lenet 300-100, replaced fully connected layers with RadiX-Net with  
N = [10, 10], B = [30, 8, 1] = 90% sparse

RadiX-Net implementation details

Original net

Random 
layer, same 

size

Random 
layer, same 

total 
connections

Explicit layer, 
same size

Explicit layer, 
same total 

connections
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Results: One-Time Pruning
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Results: Iterative Pruning

Model accuracy over time for 
Lenet 5 on CIFAR-10

Layer pruning weight threshold over time

Layer sparsity over time
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Results: Training on pruned network structure
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Lenet-5 training on pruned network structure
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Results: RadiX-Net Training

Same size
Fewer connections

Same connections
Bigger size
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● RadiX-Net sparse networks work better with Lenet 5 than Lenet 300-100
● Better performance with lower sparsity
● Extreme levels of sparsity exhibits instability in training
● Pruning-based sparse networks work better with Lenet 300-100 than Lenet 5
● Random and explicit RadiX-Net layers behave the same
● For both RadiX-Net and pruning-based networks, performance depends on network at 

hand

Interpretation of Results
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● Need to evaluate performance on larger networks to fully characterize each technique’s 
behavior

● Investigating structure of pruned network

● Develop more fine-tuned sparse strategies for replacing more specialized layers such as 
convolutional layers, attention layers, etc.

● Utilize sparse matrix libraries for matrix multiplication

Summary, Future Work and Next Steps


