Improving Parallelism of Breadth First Search (BFS)
Algorithm for Accelerated Performance on GPUs

Hao Wen*, Wei Zhang
Department of Computer Engineering and Computer Science

University of Louisville
UNIVERSITY OF

* Graduated from ECE, VCU LOU I SVI LLE

J.B. SPEED SCHOOL
OF ENGINEERING

INTRODUCTION

* Graph processing operates on a large volume of
highly connected data. Real-world applications of
graph processing include:

» Social network

» Digital maps

»Webpage hyperlinks

»VerylLarge-Scale Integration (VLSI) layout of integrated circuit (IC), etc.

INTRODUCTION

* Breadth-First Search (BFS) serves as a basic primitive
for many higher-level graph analysis applications,
e.g.,the shortest path problem.

* BFS algorithm searches the graph layer by layer.
Vertices in the same layer can be processed in
parallel, which makes it suitable for GPU computing

INTRODUCTION

 Problem with BFS on GPU?

»the irregularity of the graph makes the BFS difficult to be executed on
GPUs efficiently.

»GPU threads working on high-degree nodes take much longer time
than the threads working on low degree nodes

»many threads may be under-utilized due to the limited parallelism

INTRODUCTION

* Previous works try to solve the problem by
modifying GPU execution models or taking
advantage of CPU-GPU heterogeneous computing
for fine-grained task management

* we propose to address this issue from its origin, i.e.,
virtually changing the graph itself to eliminate the
irregularity (Virtual BFS (VBFS)).

Background

Algorithm 1 BF'S algorithm on GPU

* BFS algorithm on GPU

l: G.init(S);
Allocate GPU threads and launch GPU kernel;
Kernell
Compute GPU thread ID tid;
if GraphMask([tid] then

Clear GraphMask|[tid];

for All the neighbors of nodes[tid] do

if This neighbor is not visited then
Mark this neighbor visited;

10: Calculate the distance of this neighbor;
11: Set Corresponding UpdateGraphMask;
12: end if
13: end for
14: end if
15: End Kernell

LRIANERN

1'7: Kernel2

18: Compute GPU thread ID tid;

19: if UpdateGraphMask([tid] then

20: GraphMask[tid|=UpdateGraphMask [tid];
21: Clear UpdateGraphMask([tid];

22: end if

23: End Kernel2

Motivation

*In the graph processing like BFS, the nodes are
distributed to threads for execution. Graph
irregularity leads to workload imbalance.

Thread 1 Thread 2 GPU Warp

/ D N Thread 3
) & &9 1
s /,J \\K\-—“) -rf_:" l.\&___ . H./_J
i -._\..1 :_,*'" = .-"'*-..\. - _ 4 p g --%‘\. , = \ ./‘_,,-- = --H_\‘\
3
9 F 9 y N rF % Y
4 - 4 - y b 4 - 4

.-/ £
|

9

/ o
b

b i

| |
.-'l II'\.

“

& r
|
L

<
= __-"'/ Ny e % I 1Y > %

Motivation

* The idea of adding virtual vertex

Thread 1 Thread 2 Thread 4 GPU Warp

s o0
s o

2 3 4

The rules of adding virtual vertices

* We define a group size of K edges. Virtual vertices
are only added when the degree of outgoing edges
of a node is greater than K

*If the degree of a node is exactly a multiple of K, it
will be divided into groups of equal number of
edges. Otherwise, there will be a group with
residual edges less than K.

Representation of virtual vertices

e we do not need to have a new data structure to
store these vertices

#ending edge

S

,/-—__—‘_\\\
Graph Mask < #starting edge >

I \i

Edge array #node

Correctness of the VBFS

*|f a node has N (N>k) neighbors, we call the node
the owner of the N neighbors. After group division,
the only thing changed is that the N neighbors have
more virtual owners besides the original owner.

Correctness of the VBFS

*If there is a path originally from vertex
vl->owner—>vertex v2, there must conceptually
exist a path from vertex vl->virtual owner—>vertex
v2, so adding virtual vertices does not impact the
connectivity.

Correctness of the VBFS

- The distance of v2 is also not affected since the
virtual vertices can share the distance value of the
original owner. Actually, adding virtual vertices is

done layer by layer. The distance value propagation
Is synchronized by a global layer number.

GPU implementation of VBFS

Algorithm 2 V BF'S algorithm on GPU

1:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

24
25:
26:
27:
28:
29:
30:

o oUW

G.init(S);
if the degree of source node > K then
Divide the degree of source node into groups;
Set corresponding GraphMask;
end if
Allocate GPU threads and launch GPU kernel,;
Kernell
Compute GPU thread ID tid;
if GraphMask[tid] then
for All the neighbors represented by GraphMask[tid] do
if This neighbor is not visited then
Mark this neighbor visited;
Calculate the distance of this neighbor;
if the degree of this neighbor > K then
Divide the degree of this neighbor into groups;
Set corresponding UpdateGraphMask;
end if
end if
end for
Clear GraphMask([tid];
end if
End Kernell

Kernel2

Compute GPU thread ID tid;

if UpdateGraphMask[tid] then
GraphMask[tid]=UpdateGraphMask[tid];
Clear UpdateGraphMask([tid];

end if

End Kernel2

Experimental Environment

* We use GPGPU-sim [3] to implement and evaluate
our algorithm

GPGPU-Sim CONFIGURATION

Number of SMs 15
Size of L1 data cache per SM 48KB
L1 & L2 data cache block size 128B

L1 data cache associativity 4

Size of shared memory per SM | 16KB
Size of L2 cache 768KB
L2 data cache associativity 8

Core clock frequency 700MHz

Experimental Environment

* We evaluate the VBFS on six graphs whose the number of
nodes ranges from 128 to 4096. Each graph has two versions,
a dense version and a sparse version.

GRAPHS INFORMATION

Nodes | Edges(dense) | Edges(sparse)
Graph(128 7750 2874
Graphl 256 29586 10538
Graph2 512 125120 26650
Graph3 1024 517990 54410
Graph4 2048 2028368 167440
Graph5 4096 5315733 371420

Experimental Environment

* The performance is normalized to the baseline GPU
implementation(simulation cycles)

* Energy results are measured by GPUwattch.
* Energy Delay Product (EDP) is calculated as follows:

EDP = energy * delay = power * (delay)2

Results

* Performance comparison of the original BFS on GPU
and VBFS on dense graphs

U0 Original I 0 VBFS

speedup
Do

Results

* Performance comparison of the original BFS on GPU
and VBFS on sparse graphs

0 Original 10 VBFS

speedup

Results
* Impact of group size on the performance

GraphO Graphl Graph?2

2.9

1.8

1.6

Graph3

Results

* Impact of group size on the performance

Graph4 Graph5

1.3

speedup
1.2
1.15 1.2 1.25 1.3

Results

*Energy

Normalized Energy

| —

&
o0

<
>

<
s

U0 VBFSS [0 VBFS200VBFS80HE Original

6"»

dﬂ ALK

>
N ‘v @qg

N G@Q O@Q G@Q O@Q G@Q &

Results
* Normalized Energy Delay Product (EDP) of VBFS

o VBFS5 0 VBFS20 0 VBFS80 BB Original

Normalized EDP

Ve >
X
&

1
0.5 _ ‘
o1 ol I [
N\ N 5 &
A\3 AN qﬁ@ 6@& Yé@@-%

N o§

&

6&

Thank you!

UNIVERSITY OF

LOUISVILLE.

J.B. SPEED SCHOOL
OF ENGINEERING

	Improving Parallelism of Breadth First Search (BFS) Algorithm for Accelerated Performance on GPUs
	INTRODUCTION�
	INTRODUCTION
	INTRODUCTION
	INTRODUCTION
	Background
	Motivation
	Motivation
	The rules of adding virtual vertices
	Representation of virtual vertices
	Correctness of the VBFS
	Correctness of the VBFS
	Correctness of the VBFS
	GPU implementation of VBFS
	Experimental Environment
	Experimental Environment
	Experimental Environment
	Results
	Results
	Results
	Results
	Results
	Results
	Slide Number 24

