
Improving Parallelism of Breadth First Search (BFS)
Algorithm for Accelerated Performance on GPUs

Hao Wen*, Wei Zhang
Department of Computer Engineering and Computer Science

University of Louisville

* Graduated from ECE, VCU

INTRODUCTION
• Graph processing operates on a large volume of

highly connected data. Real-world applications of
graph processing include:
 Social network
 Digital maps
Webpage hyperlinks
VeryLarge-Scale Integration (VLSI) layout of integrated circuit (IC), etc.

INTRODUCTION

• Breadth-First Search (BFS) serves as a basic primitive
for many higher-level graph analysis applications,
e.g.,the shortest path problem.

• BFS algorithm searches the graph layer by layer.
Vertices in the same layer can be processed in
parallel, which makes it suitable for GPU computing

INTRODUCTION

• Problem with BFS on GPU?
the irregularity of the graph makes the BFS difficult to be executed on

GPUs efficiently.

GPU threads working on high-degree nodes take much longer time
than the threads working on low degree nodes

many threads may be under-utilized due to the limited parallelism

INTRODUCTION

• Previous works try to solve the problem by
modifying GPU execution models or taking
advantage of CPU-GPU heterogeneous computing
for fine-grained task management

• we propose to address this issue from its origin, i.e.,
virtually changing the graph itself to eliminate the
irregularity (Virtual BFS (VBFS)).

Background

• BFS algorithm on GPU

Motivation
• In the graph processing like BFS, the nodes are

distributed to threads for execution. Graph
irregularity leads to workload imbalance.

Motivation

• The idea of adding virtual vertex

The rules of adding virtual vertices
• We define a group size of K edges. Virtual vertices

are only added when the degree of outgoing edges
of a node is greater than K

• If the degree of a node is exactly a multiple of K, it
will be divided into groups of equal number of
edges. Otherwise, there will be a group with
residual edges less than K.

Representation of virtual vertices

• we do not need to have a new data structure to
store these vertices

Correctness of the VBFS

• If a node has N (N>k) neighbors, we call the node
the owner of the N neighbors. After group division,
the only thing changed is that the N neighbors have
more virtual owners besides the original owner.

Correctness of the VBFS

• If there is a path originally from vertex
v1−>owner−>vertex v2, there must conceptually
exist a path from vertex v1−>virtual owner−>vertex
v2, so adding virtual vertices does not impact the
connectivity.

Correctness of the VBFS

• The distance of v2 is also not affected since the
virtual vertices can share the distance value of the
original owner. Actually, adding virtual vertices is
done layer by layer. The distance value propagation
is synchronized by a global layer number.

GPU implementation of VBFS

Experimental Environment

• We use GPGPU-sim [3] to implement and evaluate
our algorithm

Experimental Environment

• We evaluate the VBFS on six graphs whose the number of
nodes ranges from 128 to 4096. Each graph has two versions,
a dense version and a sparse version.

Experimental Environment

• The performance is normalized to the baseline GPU
implementation(simulation cycles)

• Energy results are measured by GPUwattch.
• Energy Delay Product (EDP) is calculated as follows:

Results
• Performance comparison of the original BFS on GPU

and VBFS on dense graphs

Results
• Performance comparison of the original BFS on GPU

and VBFS on sparse graphs

Results
• Impact of group size on the performance

Results

• Impact of group size on the performance

Results

• Energy

Results
• Normalized Energy Delay Product (EDP) of VBFS

Thank you!

	Improving Parallelism of Breadth First Search (BFS) Algorithm for Accelerated Performance on GPUs
	INTRODUCTION�
	INTRODUCTION
	INTRODUCTION
	INTRODUCTION
	Background
	Motivation
	Motivation
	The rules of adding virtual vertices
	Representation of virtual vertices
	Correctness of the VBFS
	Correctness of the VBFS
	Correctness of the VBFS
	GPU implementation of VBFS
	Experimental Environment
	Experimental Environment
	Experimental Environment
	Results
	Results
	Results
	Results
	Results
	Results
	Slide Number 24

