
Heterogeneous Cache Hierarchy Management for 
Integrated CPU-GPU Architecture

Hao Wen*, Wei Zhang
Department of Computer Engineering and Computer Science

University of Louisville

* Graduated from ECE, VCU 



Introduction
• Current heterogeneous CPU-GPU architectures integrate 

general-purpose CPUs and highly thread-level parallelized 
GPUs in the same die and share the same DRAM, last-level 
cache (LLC), as well as the interconnection network.

Presenter
Presentation Notes
To solve the speed disparity between microprocessor and DRAM memory access latency, cache has been used to effectively diminish the impact of speed gap by taking advantage of the spatial and temporal locality of memory accesses

However, cache hit rate is limited by the cache size, which can not be increased without limitation. A larger cache has a higher access latency as well as the manufacturing cost. Multi-level caches enable a trade off between access latencies and miss rates




Introduction

• For the two-level cache hierarchy, it can be designed 
to be inclusive or exclusive. The inclusion property 
dictates the contents of a lower level cache be a 
subset of the contents of a higher level cache, while 
the exclusive cache hierarchy may achieve a larger 
effective cache size since the contents



Prior Work

• Prior works focus on exploiting inclusive/exclusive 
cache properties to evaluate/improve performance 
on CPU cache hierarchy

• however, how the inclusive/exclusive properties 
affect the GPU performance and interact with the 
CPU in the LLC for the CPU-GPU heterogeneous 
architecture remains largely unknown



Background

• The integrated CPU-GPU heterogeneous 
architecture evaluated in this work



Background

• we propose and evaluate three different cache 
hierarchy management policies
Selective GPU LLC fill
Selective GPU L1 write back
A hybrid policy combining the first two, and selectively 

replacing CPU blocks in the LLC



Background
• Base line cache access flow



Selective GPU LLC fill

• Since GPU applications have much more memory requests 
than CPU and tend to monopolize the resources in the LLC, 
GPU applications tend to have more power to evict CPU 
cache lines. 



Selective GPU LLC fill

• To reduce the CPU-evicted-by-GPU conflict misses in 
the LLC, we selectively fill the LLC for GPU requests 
from the memory.

• For the GPU fill flow from memory, if the LRU block 
is a CPU block, instead of replacing the LRU CPU 
block, the GPU fill block will bypass the LLC and be 
directly filled to GPU L1 cache



Selective GPU LLC fill
• If the LRU block is a GPU block, it works as a normal GPU fill 

in the LLC. This policy will give the CPU higher priority in the 
LLC utilization



Selective GPU L1 Write Back

• Cache generation



Selective GPU L1 Write Back
• if the GPU block is not found in both L1 and L2, instead of 

fetching from the main memory and placing in both L1 and 
L2, the missing block will only be filled to L1.

• When blocks in the GPU L1 cache are replaced, they will be 
selectively written back to the LLC. 



Selective GPU L1 Write Back

• Evicted blocks from the GPU L1 cache will be written 
back to LLC if they are predicted to be reused in the 
near future

• If the written back blocks cause eviction in the LLC, 
we give CPU blocks in the LLC higher priority and 
always replace the LRU GPU block, unless there are 
no GPU blocks can be found in a cache set.



Selective GPU L1 Write Back

• How to predict?
In order to predict whether the evicted blocks in the GPU 

L1 cache will be reused or not in the near future, we take 
advantage of the access interval during the live time of a 
cache generation.
 The idea is to predict the cache line is still alive if the 

distance between the last hit and the time being replaced 
is smaller than a pre-determined value



Selective GPU L1 Write Back

• Implementation
Every cache line is associated with a counter
Every time the cache line is accessed or brought to the 

cache for the first time, the counter is reset to zero.
The counter is incremented at fixed time intervals. If 

there is no access to the cache line and the counter 
reaches the pre-set value, it is predicted that this cache 
line is dead



Selectively Replacing CPU Blocks In the LLC

• For the selective GPU L1 write back, the written back GPU 
blocks in the LLC may not be highly reused (the prediction is 
not 100% accurate).

• In order to improve the LLC performance for GPU, the GPU 
blocks in the LLC not only get filled through the GPU L1 write 
backs, but also can be filled through the GPU fill flow from 
memory. 

• Therefore, the selective GPU LLC fill and selective GPU L1 
write back can be combined together.



Selectively Replacing CPU Blocks In the LLC

• Currently, no matter selective GPU LLC fill or selective 
GPUL1writeback,CPUblocksarenotallowedtobereplaced by 
GPU requests (both fill requests from memory and write 
backs from GPU L1). 

• Due to the higher priority of CPU blocks in the LLC, the GPU 
LLC miss rate will increase, leading to possible GPU 
performance overhead.



Selectively Replacing CPU Blocks In the LLC

• The high CPU LLC priority rule may be relaxed to reduce GPU 
performance overhead while maintaining the maximum CPU 
performance improvement. 

• The idea is still using the concept of the cache generation. 
When a CPU block in the LLC is about to be replaced by a 
GPU request, it is allowed if this CPU block is predicted to be 
dead. Again, the counter-based predicting method is used. 



Experimental Environment

• We use MacSim , a CPU-GPU heterogeneous 
simulation framework to evaluate our work. 



CPU LLC miss rate for different policies



CPU performance for different policies



GPU LLC miss rate for different policies



CPU performance for different policies



Thank you!


	Heterogeneous Cache Hierarchy Management for Integrated CPU-GPU Architecture
	Introduction
	Introduction
	Prior Work
	Background
	Background
	Background
	Selective GPU LLC ﬁll�
	Selective GPU LLC ﬁll
	Selective GPU LLC ﬁll
	Selective GPU L1 Write Back
	Selective GPU L1 Write Back
	Selective GPU L1 Write Back
	Selective GPU L1 Write Back
	Selective GPU L1 Write Back
	Selectively Replacing CPU Blocks In the LLC
	Selectively Replacing CPU Blocks In the LLC
	Selectively Replacing CPU Blocks In the LLC
	Experimental Environment
	 CPU LLC miss rate for different policies�
	 CPU performance for different policies�
	GPU LLC miss rate for different policies�
	CPU performance for different policies�
	Slide Number 24

