
HPEC 2019

Automatic Parallelization to
Asynchronous Task-Based Runtimes

Through a Generic Runtime Layer
Charles Jin, Muthu Baskaran, Benoit Meister, Jonathan Springer

Twenty-third Annual IEEE High Performance Extreme Computing Conference (HPEC ‘19)
Waltham, MA

25 September 2019

1

Acknowledgement of Support: This material is based in part upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research under Awards Number DE-SC0018480 and DE-SC0019522.

HPEC 2019

Motivation

● Post-Moore exascale challenges: load balancing, locality, scalability...
● Active research to address these via asynchronous task-based runtimes
● Auto-parallelization tools to reduce reliance on “hero” developer(s)

2

HPEC 2019

Motivation

● Post-Moore exascale challenges: load balancing, locality, scalability...
● Active research to address these via asynchronous task-based runtimes
● Auto-parallelization tools to reduce reliance on “hero” developer(s)
● This work seeks to unify the two efforts via an end-to-end framework

for automatic parallelization to asynchronous task-based runtimes

3

HPEC 2019

Contributions

● Augment R-Stream, an auto-parallelizing polyhedral compiler, to
express task-based parallelism and data management for a generic
runtime

● Design a generic task-based runtime layer corresponding to the
polyhedral output

● Provide two implementations of generic runtime using OpenMP tasks
(shared memory) and Legion (distributed memory)

4

HPEC 2019

Contributions

● Augment R-Stream, an auto-parallelizing polyhedral compiler, to
express task-based parallelism and data management for a generic
runtime

● Design a generic task-based runtime layer corresponding to the
polyhedral output

● Provide two implementations of generic runtime using OpenMP tasks
(shared memory) and Legion (distributed memory)

End-to-end auto-parallelization of sequential source to asynchronous
task-based parallelism

5

HPEC 2019

Generic Runtime Layer
Background

● Generic runtime layer aims to capture common paradigms of
task-based parallelism and data management
○ Launch tasks, allocate data, and express dependences
○ Shared and distributed memory

● Also designed to serve as an abstract code generation target for a
polyhedral compiler workflow

6

HPEC 2019

Generic Runtime Layer
Tasks

● Tiled units of computation
○ taskTypeId: lightweight

handle to function
○ taskId: passed to task at

runtime, allowing it to
determine its share of
computation

● Tiles of data
○ dbTypeId: datablock

identifier
○ coords: a list of tile

coordinates
● Passed by reference
● Size is specified when fetched

Datablocks

HPEC 2019

Generic Runtime Layer
Tasks

● Tiled units of computation
○ taskTypeId: lightweight

handle to function
○ taskId: passed to task at

runtime, allowing it to
determine its share of
computation

● Ex: a loop from [0, 63] is
decomposed into 4 tasks
covering [0, 15], [16, 31], [32,
47], [48, 63]

● Tiles of data
○ dbTypeId: datablock

identifier
○ coords: a list of tile

coordinates
● Passed by reference
● Size is specified when fetched
● Ex: a 64-by-64 array is

decomposed into 4 datablocks
of size 32-by-32

Datablocks

HPEC 2019

Generic Runtime Layer
Dependences

When a new instance of a task is created:
● Data Dependence. Runtime is passed references to all necessary

datablocks by parent.
● Control Dependence. Runtime is passed number of predecessors of

child task by parent.

9

HPEC 2019

Generic Runtime Layer
Dependences

When a new instance of a task is created:
● Data Dependence. Runtime is passed references to all necessary

datablocks by parent.
● Control Dependence. Runtime is passed number of predecessors of

child task by parent.

When a task completes:
● It “auto-decrements” (autodec) the count of all successor tasks.

10

HPEC 2019

Generic Runtime Layer
Dependences

When a new instance of a task is created:
● Data Dependence. Runtime is passed references to all necessary

datablocks by parent.
● Control Dependence. Runtime is passed number of predecessors of

child task by parent.

When a task completes:
● It “auto-decrements” (autodec) the count of all successor tasks.

The runtime does not schedule a task for execution until predecessor count
equals zero and requested datablocks are coherent and available.

11

HPEC 2019

Generic Runtime Layer
Self-unfolding Task DAG

The autodec operation permits a self-unfolding task DAG
● Static task DAG = overhead at start up
● Dynamic task DAG = overhead for runtime dependence analysis

12

HPEC 2019

Generic Runtime Layer
Self-unfolding Task DAG

The autodec operation permits a self-unfolding task DAG
● Static task DAG = overhead at start up
● Dynamic task DAG = overhead for runtime dependence analysis
● Self-unfolding task DAG = frontier nodes (tasks) and edges

(dependences) are dynamically created by encountering task

13

HPEC 2019

Generic Runtime Layer
Self-unfolding Task DAG

The autodec operation permits a self-unfolding task DAG
● Static task DAG = overhead at start up
● Dynamic task DAG = overhead for runtime dependence analysis
● Self-unfolding task DAG = frontier nodes (tasks) and edges

(dependences) are dynamically created by encountering task

14

For frameworks which provide the
functionality, R-Stream does not create the
entire task DAG and datablocks at runtime
initialization

HPEC 2019

Generic Runtime Layer
Self-unfolding Task DAG

The autodec operation permits a self-unfolding task DAG
● Static task DAG = overhead at start up
● Dynamic task DAG = overhead for runtime dependence analysis
● Self-unfolding task DAG = frontier nodes (tasks) and edges

(dependences) are dynamically created by encountering task

15

Initially, only root tasks (and their required
datablocks) are created

HPEC 2019

Generic Runtime Layer
Self-unfolding Task DAG

The autodec operation permits a self-unfolding task DAG
● Static task DAG = overhead at start up
● Dynamic task DAG = overhead for runtime dependence analysis
● Self-unfolding task DAG = frontier nodes (tasks) and edges

(dependences) are dynamically created by encountering task

16

As tasks complete, the task graph
“self-unfolds” to generate a frontier of
uncompleted tasks, adjusting the
predecessor counts

HPEC 2019

Generic Runtime Layer
Self-unfolding Task DAG

The autodec operation permits a self-unfolding task DAG
● Static task DAG = overhead at start up
● Dynamic task DAG = overhead for runtime dependence analysis
● Self-unfolding task DAG = frontier nodes (tasks) and edges

(dependences) are dynamically created by encountering task

17

Completed tasks are freed by the runtime to
keep the active space compact

HPEC 2019

Generic Runtime Layer
Self-unfolding Task DAG

The autodec operation permits a self-unfolding task DAG
● Static task DAG = overhead at start up
● Dynamic task DAG = overhead for runtime dependence analysis
● Self-unfolding task DAG = frontier nodes (tasks) and edges

(dependences) are dynamically created by encountering task

18

Completed tasks are freed by the runtime to
keep the active space compact

Datablocks are also freed once they are no
longer needed

HPEC 2019

Polyhedral Flow
Background

● Polyhedral model is an optimization framework that uses a compact
mathematical representation of a computation as a polyhedron
○ e.g., each iteration of a nested loop body is a point in space
○ Data and dependences represented as well

● Optimizations are applied as transformations to the polyhedron
○ e.g., loop fusion, array contraction, loop fusion, interchange, fission…

● Most precise on affine regions and access patterns

19

HPEC 2019

Polyhedral Flow
Polyhedral Analysis

● Starting from sequential source…
● Raising and dependence analysis generate polyhedral representation
● Scheduling exposes parallelism and improves locality
● Heuristic tiling increases granularity of parallelism while balancing

data reuse, cache sizes, and runtime overhead
● Dependence generation identifies successors for task tiles
● Finally, code generation is performed via standard polyhedral scanning

20

Based on prior work by M. Baskaran, B. Pradelle, B. Meister, A. Konstantinidis, and R. Lethin, “Automatic code generation and data management for an asynchronous
task-based runtime,” in 2016 5th Workshop on Extreme-Scale Programming Tools (ESPT), Nov 2016, pp. 34–41.

HPEC 2019

Results
Benchmark Performance

Geomean speedups of
● 23.0x (OpenMP task)
● 9.5x (Legion)
● 21.0x (hand-tuned OpenMP, do-all)

21

8-core (16 threads) quad socket Intel Xeon (Ivy Bridge) server. Compiled with GCC 7.3 (OpenMP 4.5). Threads were bound to sockets to reduce NUMA overhead.

HPEC 2019

Results
Qualitative Discussion

OpenMP task
● On-par with hand-tuned OpenMP do-all, which benefits from richer APIs for affinity

and locality hints at runtime level
● Especially good on kernels with irregular dependences

Legion
● Mapper interface to better tune to architecture and applications
● Distributed overhead in a shared-memory environment

Portability
● 96 lines of sequential source
● 380 lines of shared memory parallelism
● 2315 lines of distributed memory parallelism

22

HPEC 2019

Concluding Remarks

End-to-end auto-parallelization to asynchronous task-based runtimes
● Proof of concept using polyhedral flow to target a generic task-based

parallelism
● Both shared and distributed memory

23

HPEC 2019

Concluding Remarks

End-to-end auto-parallelization to asynchronous task-based runtimes
● Proof of concept using polyhedral flow to target a generic task-based

parallelism
● Both shared and distributed memory

Future Work
● Refinement of polyhedral optimizations

○ Particularly for distributed memory
● Other runtimes: Kokkos, CudaGraphs, etc.

24

HPEC 2019

Questions?

25

HPEC 2019

Generic Runtime Layer
High level API

Predecessor count function: parameterized by taskTypeId and
taskId, returns number of predecessors.

Datablock enumeration function: parameterized by taskTypeId and
taskId, fills child context with requested dbTypeId and coords.

Autodec: accepts as input the (1) child taskTypeId and taskId, (2)
the predecessor count function, and (3) the datablock enumeration function.

Datablock fetch: takes dbTypeId, coords, and size; returns a region
of memory for read / write.

26

HPEC 2019

Generic Runtime Layer
Datablock API

● Registered with the runtime
● Represented as a tiled array
● Covers both shared and distributed

memory with no extra overhead

● fetchDB returns a C-style array
pointer for read / write

● Compiler will never generate two
fetches which lead to a data race

● Implemented using target
framework’s primitives

// 4x8 array of 5x5 tiles
// total dimensions: 20x40
declareDBType(0, /*dbId*/
 5, 5, /*tileDims*/
 4, 8, /*numTiles*/);

// returns tile (1, 3)
// which is [5:10, 15:20] in
// original array
fetchDB(0, /*dbId*/
 1, 3 /*tileId*/);

HPEC 2019

Generic Runtime Layer
Task API

● Registered with the runtime
● Tasks represent automatically tiled

units of work from original program
● autodec is implemented using

target framework’s primitives

// original code
for (i = 0; i < 100; i++)
 A[i] *= 2;

// tiled tasks using generic API
declareTaskType(0, /*taskTypeId*/
 task0 /*fn*/);

for (i = 0; i < 5; i++)
 autodec(0, /*taskTypeId*/
 i /*taskId*/,
 ...);

task0 (taskId, ...):
 for (i = 0; i < 20; i++)

A[taskId * i] *= 2;

HPEC 2019

Generic Runtime Layer
Dependence API

● Dynamic creation of task DAG
● All predecessors try to spawn the task,

but only one succeeds
● Dynamic enumeration of the required

datablocks for the spawned task
● wait, spawn, (+ other context set

up) implemented using target runtime
primitives

autodec(..., predCntFn, dbEnumFn):
 taskCtx.count++;
 if (taskCtx.count = predCntFn(...)) {

dbEnumFn(taskCtx, ...);
wait(taskCtx.dbs);
spawn(taskCtx);

 }

predCntFn(taskTypeId, taskId, ...):
 // returns number of predecessors
 // for the given task

dbEnumFn(childCtx, taskTypeId, taskId):
 childCtx.addDB(...);
 childCtx.addDB(...);

HPEC 2019

Polyhedral Flow
Code Generation

Tiling
● Tile boundaries for iteration spaces = tasks
● Tile boundaries for data arrays = datablocks

Dependence generation
● Control dependence polyhedra

○ Projecting along direction of dependence = autodec
○ Projecting against direction of dependence = predecessor count function

● Data dependence polyhedra = datablock enumeration function

Final code generation of generic APIs is specialized by target runtime

30

