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Motivation

● Post-Moore exascale challenges: load balancing, locality, scalability...
● Active research to address these via asynchronous task-based runtimes 
● Auto-parallelization tools to reduce reliance on “hero” developer(s)
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Motivation

● Post-Moore exascale challenges: load balancing, locality, scalability...
● Active research to address these via asynchronous task-based runtimes 
● Auto-parallelization tools to reduce reliance on “hero” developer(s)
● This work seeks to unify the two efforts via an end-to-end framework 

for automatic parallelization to asynchronous task-based runtimes
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Contributions

● Augment R-Stream, an auto-parallelizing polyhedral compiler, to 
express task-based parallelism and data management for a generic 
runtime

● Design a generic task-based runtime layer corresponding to the 
polyhedral output

● Provide two implementations of generic runtime using OpenMP tasks 
(shared memory) and Legion (distributed memory)
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Contributions

● Augment R-Stream, an auto-parallelizing polyhedral compiler, to 
express task-based parallelism and data management for a generic 
runtime

● Design a generic task-based runtime layer corresponding to the 
polyhedral output

● Provide two implementations of generic runtime using OpenMP tasks 
(shared memory) and Legion (distributed memory)

End-to-end auto-parallelization of sequential source to asynchronous 
task-based parallelism
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Generic Runtime Layer
Background

● Generic runtime layer aims to capture common paradigms of 
task-based parallelism and data management
○ Launch tasks, allocate data, and express dependences
○ Shared and distributed memory

● Also designed to serve as an abstract code generation target for a 
polyhedral compiler workflow
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Generic Runtime Layer
Tasks

● Tiled units of computation
○ taskTypeId: lightweight 

handle to function
○ taskId: passed to task at 

runtime, allowing it to 
determine its share of 
computation

● Tiles of data
○ dbTypeId: datablock 

identifier
○ coords: a list of tile 

coordinates
● Passed by reference
● Size is specified when fetched

Datablocks
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Generic Runtime Layer
Tasks

● Tiled units of computation
○ taskTypeId: lightweight 

handle to function
○ taskId: passed to task at 

runtime, allowing it to 
determine its share of 
computation

● Ex: a loop from [0, 63] is 
decomposed into 4 tasks 
covering [0, 15], [16, 31], [32, 
47], [48, 63]

● Tiles of data
○ dbTypeId: datablock 

identifier
○ coords: a list of tile 

coordinates
● Passed by reference
● Size is specified when fetched
● Ex: a 64-by-64 array is 

decomposed into 4 datablocks 
of size 32-by-32

Datablocks
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Generic Runtime Layer
Dependences

When a new instance of a task is created:
● Data Dependence. Runtime is passed references to all necessary 

datablocks by parent.
● Control Dependence. Runtime is passed number of predecessors of 

child task by parent.
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Generic Runtime Layer
Dependences

When a new instance of a task is created:
● Data Dependence. Runtime is passed references to all necessary 

datablocks by parent.
● Control Dependence. Runtime is passed number of predecessors of 

child task by parent.

When a task completes:
● It “auto-decrements” (autodec) the count of all successor tasks.

The runtime does not schedule a task for execution until predecessor count 
equals zero and requested datablocks are coherent and available.
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Generic Runtime Layer
Self-unfolding Task DAG

The autodec operation permits a self-unfolding task DAG
● Static task DAG = overhead at start up
● Dynamic task DAG = overhead for runtime dependence analysis
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Generic Runtime Layer
Self-unfolding Task DAG

The autodec operation permits a self-unfolding task DAG
● Static task DAG = overhead at start up
● Dynamic task DAG = overhead for runtime dependence analysis
● Self-unfolding task DAG = frontier nodes (tasks) and edges 

(dependences) are dynamically created by encountering task
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For frameworks which provide the 
functionality, R-Stream does not create the 
entire task DAG and datablocks at runtime 
initialization
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Generic Runtime Layer
Self-unfolding Task DAG

The autodec operation permits a self-unfolding task DAG
● Static task DAG = overhead at start up
● Dynamic task DAG = overhead for runtime dependence analysis
● Self-unfolding task DAG = frontier nodes (tasks) and edges 

(dependences) are dynamically created by encountering task

15

Initially, only root tasks (and their required 
datablocks) are created
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Generic Runtime Layer
Self-unfolding Task DAG

The autodec operation permits a self-unfolding task DAG
● Static task DAG = overhead at start up
● Dynamic task DAG = overhead for runtime dependence analysis
● Self-unfolding task DAG = frontier nodes (tasks) and edges 

(dependences) are dynamically created by encountering task
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As tasks complete, the task graph 
“self-unfolds” to generate a frontier of 
uncompleted tasks, adjusting the 
predecessor counts
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Completed tasks are freed by the runtime to 
keep the active space compact
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Generic Runtime Layer
Self-unfolding Task DAG

The autodec operation permits a self-unfolding task DAG
● Static task DAG = overhead at start up
● Dynamic task DAG = overhead for runtime dependence analysis
● Self-unfolding task DAG = frontier nodes (tasks) and edges 

(dependences) are dynamically created by encountering task
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Completed tasks are freed by the runtime to 
keep the active space compact

Datablocks are also freed once they are no 
longer needed
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Polyhedral Flow
Background

● Polyhedral model is an optimization framework that uses a compact 
mathematical representation of a computation as a polyhedron
○ e.g., each iteration of a nested loop body is a point in space
○ Data and dependences represented as well

● Optimizations are applied as transformations to the polyhedron
○ e.g., loop fusion, array contraction, loop fusion, interchange, fission…

● Most precise on affine regions and access patterns
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Polyhedral Flow
Polyhedral Analysis

● Starting from sequential source…
● Raising and dependence analysis generate polyhedral representation
● Scheduling exposes parallelism and improves locality
● Heuristic tiling increases granularity of parallelism while balancing 

data reuse, cache sizes, and runtime overhead
● Dependence generation identifies successors for task tiles
● Finally, code generation is performed via standard polyhedral scanning

20

Based on prior work by M. Baskaran, B. Pradelle, B. Meister, A. Konstantinidis, and R. Lethin, “Automatic code generation and data management for an asynchronous 
task-based runtime,” in 2016 5th Workshop on Extreme-Scale Programming Tools (ESPT), Nov 2016, pp. 34–41.
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Results
Benchmark Performance

Geomean speedups of
● 23.0x (OpenMP task)
● 9.5x (Legion)
● 21.0x (hand-tuned OpenMP, do-all)
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8-core (16 threads) quad socket Intel Xeon (Ivy Bridge) server. Compiled with GCC 7.3 (OpenMP 4.5). Threads were bound to sockets to reduce NUMA overhead.
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Results
Qualitative Discussion

OpenMP task
● On-par with hand-tuned OpenMP do-all, which benefits from richer APIs for affinity 

and locality hints at runtime level
● Especially good on kernels with irregular dependences

Legion
● Mapper interface to better tune to architecture and applications
● Distributed overhead in a shared-memory environment

Portability
● 96 lines of sequential source
● 380 lines of shared memory parallelism
● 2315 lines of distributed memory parallelism
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Concluding Remarks

End-to-end auto-parallelization to asynchronous task-based runtimes
● Proof of concept using polyhedral flow to target a generic task-based 

parallelism
● Both shared and distributed memory
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Concluding Remarks

End-to-end auto-parallelization to asynchronous task-based runtimes
● Proof of concept using polyhedral flow to target a generic task-based 

parallelism
● Both shared and distributed memory

Future Work
● Refinement of polyhedral optimizations

○ Particularly for distributed memory
● Other runtimes: Kokkos, CudaGraphs, etc.
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Questions?
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Generic Runtime Layer
High level API

Predecessor count function: parameterized by taskTypeId and 
taskId, returns number of predecessors.

Datablock enumeration function: parameterized by taskTypeId and 
taskId, fills child context with requested dbTypeId and coords.

Autodec: accepts as input the (1) child taskTypeId and taskId, (2) 
the predecessor count function, and (3) the datablock enumeration function.

Datablock fetch: takes dbTypeId, coords, and size; returns a region 
of memory for read / write.
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Generic Runtime Layer
Datablock API

● Registered with the runtime
● Represented as a tiled array
● Covers both shared and distributed 

memory with no extra overhead

● fetchDB returns a C-style array 
pointer for read / write

● Compiler will never generate two 
fetches which lead to a data race

● Implemented using target 
framework’s primitives

// 4x8 array of 5x5 tiles
// total dimensions: 20x40
declareDBType(0,    /*dbId*/
              5, 5, /*tileDims*/
              4, 8, /*numTiles*/);

// returns tile (1, 3)
// which is [5:10, 15:20] in
// original array
fetchDB(0,   /*dbId*/
        1, 3     /*tileId*/);
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Generic Runtime Layer
Task API

● Registered with the runtime
● Tasks represent automatically tiled 

units of work from original program
● autodec is implemented using 

target framework’s primitives

// original code
for (i = 0; i < 100; i++)
  A[i] *= 2;

// tiled tasks using generic API
declareTaskType(0,     /*taskTypeId*/
               task0  /*fn*/);

for (i = 0; i < 5; i++)
  autodec(0,  /*taskTypeId*/
          i   /*taskId*/, 
          ...);

task0 (taskId, ...):
  for (i = 0; i < 20; i++)

A[taskId * i] *= 2;
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Generic Runtime Layer
Dependence API

● Dynamic creation of task DAG
● All predecessors try to spawn the task, 

but only one succeeds
● Dynamic enumeration of the required 

datablocks for the spawned task
● wait, spawn, (+ other context set 

up) implemented using target runtime 
primitives

autodec(..., predCntFn, dbEnumFn):
  taskCtx.count++;
  if (taskCtx.count = predCntFn(...)) {

dbEnumFn(taskCtx, ...);
wait(taskCtx.dbs);
spawn(taskCtx);

  }

predCntFn(taskTypeId, taskId, ...):
  // returns number of predecessors
  // for the given task

dbEnumFn(childCtx, taskTypeId, taskId):
  childCtx.addDB(...);
  childCtx.addDB(...);
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Polyhedral Flow
Code Generation

Tiling
● Tile boundaries for iteration spaces = tasks
● Tile boundaries for data arrays = datablocks

Dependence generation
● Control dependence polyhedra

○ Projecting along direction of dependence = autodec
○ Projecting against direction of dependence = predecessor count function

● Data dependence polyhedra = datablock enumeration function

Final code generation of generic APIs is specialized by target runtime
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