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Outline
‘*Emerging physical systems with the advent of loT

‘*Toward DyMaaS
‘*Modeling framework as a basis for iterative co-design
“**Physics-based adaptive computer architecture design

“**Physics-based multi-rate numerical methods for physical
response emulation

" Intra-processor computations
" [nter-processor emulation computations

***Case of a microgrid system
“**Future work -
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Emerging systems with the advent of loT
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Computational challenges and the need for
DyMaa$S

***Physical systems involve multi-rate dynamical evolution ranging from
microseconds to hours

*»*Spread across large geographical areas
“Rolutions advocated presently HPECaa$
Not scalable to

" |ncrease computational power and communication rate  [arbitrarily large systems

" Include hardware implementations such as GPGPUs, etc. ~)Quickly gets expensive

**Above largely make use of data-level and/or task-level parallelism
**We propose to exploit algorithm-level parallelism by understanding
the underlying structure --- Towards DyMaa$
EESG
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Modeling framework as the basis for providing

New aggregate variables Dy W 33 S

z. =[E,P] : e :
i ’ * Physics-based unified aggregation
_ ) . AT . . .
Interaction model: ; . 0. variables- common information model
~ * Dictates adaptive communication rates

needed — need not be trial-and-error
based scheduling

* Inherently interactive underlying
model facilitates predictive
computation— achieves numerically
stable computations

Stand-alone model:

& 1w * Internal information abstracted
=1,

V.= £ (xr,) sufficiently - decreased security  EESG
vulnerabilities @lllir




Physics-based adaptive design of computing
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State-machine implementation of actors

State 1:

— ReceivePortPowerinfo — Receive the information of Port power interactions

— ReceiveNextTimeStep — Receive desirable present time step of communication
from neighbors

Input Port power
G |nformation
Adaptive time step

Commonly understood
physical variables as the
minimum communication

Output Port Input Port
power power
Information Information
State 2: Sub-state 1:

e Simulate interaction model for present values of input port power
* Compute average output port power values

Stored energy, Stored energy Port inputs in

its rate of in tangent conventional

Sub-state 2:
* Simulate internal dynamics for present values of port inputs
* Compute fine granularity output port power values

— SendPortPowerinfo — After convergence of average of output port power
values as computed by sub-sates 1 and 2, send the Port power output variables

— SendNextTimeStep — Find the desirable next time step of communication

I .
I = I I [ I_l_l utilizing value of the time constant computed at present operating conditions

needs

More granular simulations
— order is very low,

- Can use existing HPEC
methods to exploit data-
level and task-level
parallelism if needed

Output Port power
p—) |nformation

Adaptive tirTEElSG
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Physics-based interactive numerical methods
for intra-processor simulations
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Physics-based interactive numerical methods
for inter-processor simulations
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Physics-based adaptive resource allocation of a

Given: only three dedicated
processors available
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System simulation

computation complexity

* 160 state variables
without even modeling
dynamics of homes.

* Timescales range from
microseconds at PV to
seconds in the backup
diesel generator

Partitions created
dynamically using the
operating conditions
dependent time constants
of the aggregation variables
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Conclusions
*Modeling framework utilized for co-design of computing

architecture and interactive numerical schemes to be embedded

*Modeling is cognizant of possible non-determinism and
asynchronism of communicated information

**Inherently modular facilitating plug-and-play of devices

“*Promising results obtained in the field of control — dual of the
numerical problems studied typically

**Extension of the framework to provide grid services is a straight-
forward extension being pursued as well

s Effectiveness of the numerical methods and the scalability
analysis of the iterative co-design is work in progress EESG
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