
Kai Huang, Mehmet Gungor, Stratis Ioannidis, Miriam Leeser

Xin Fang
Qualcomm

Garbled Circuits in the Cloud using
FPGA Enabled Nodes

Dept. of Electrical and Computer Engineering
Northeastern University

Boston, MA

Boxborough, MA

Introduction and Motivation

● More and more computations are done in the cloud with user data

● Secure Function Evaluation (SFE) is needed to protect privacy of user data

● Cloud services provide FPGA infrastructure

● We accelerate garbled circuits in the cloud using FPGA

2

Presenter
Presentation Notes
People are paying more attention to the data privacy and the SFE is needed to protect that
However, the requirement of privacy always brings a large amount of computations, that makes it a really long processing time for the applications.
Our target is to improve their performances.
Furthermore, … clould services now … usually provide …. .so we choose to accelerate

Secure Function Evaluation

● Only Users have access to their own unencrypted data

● Analyst processes the encrypted data

Applying SFE

3

Yao’s Garbled Circuit

● Entities in Yao’s Garbled Circuit Protocol:
⁃ Users
⁃ Garbler
⁃ Evaluator

● Function to be evaluated should be expressed by a
Boolean circuit and can then be constructed as a garbled
circuit represented as AND and XOR gates

● Garbler generates key pairs to represent bit values 0 and
1 and garbles the circuit

● Evaluator evaluates the circuit and learns the result

4

function to be evaluated

Garbling an AND gate in Garbled Circuit

Garbling an AND gate in Garbled Circuit

● AND gate in Garbled Circuit contains
4 SHA-1 cores

● AND gate encrypts the output entry of
the truth table and generates the
garbling table

● Garbling table needs to be sent to
evaluator

5

Yao’s Garbled Circuit

● Users, garbler and evaluator engage in
proxy oblivious transfer (OT)

● Output keys from the previous gates
are used as the inputs of following
gates

● Evaluator needs the garbling table from
garbler to decrypt the AND gate

6

Garbler and Evaluator in Yao’s Garbled Circuit

7

Garbled Circuit Optimizations

● Row Reduction
one ciphertext is picked to be 0

● Point and Permute
evaluator needs only decrypt the garbling table once

● Free-XOR
output wire keys are calculated by taking XOR of two input keys

[Malkhi, Nisan, Pinkas, Sella; USENIX Security 2004]

[Kolesnikov, Schneider; ICALP 2008]

[Naor, Pinkas, Summer; EC 1999]

Yao’s Garbled Circuit

● Yao’s Garbled Circuit guarantees users’
data privacy

● Garbler facilitates SFE but learns nothing

● Evaluator learns nothing but the output

● The AND gate requires encryption of SHA
cores

Garbled Circuit Protocol

8

Challenges and Contributions

Challenges:

● Garbling significantly slows down function evaluation

● Accelerate any general garbled circuit

● Prove scalability for large datasets

9

Contributions:

Implemented:

● a hardware FPGA overlay for general garbled circuit problem

● an End-to-End system for garbled circuit in the Cloud

● a complete design on AWS platform

Amazon Web Service (AWS)

Each Xilinx FPGA includes:
• Local 64 GB DDR4 ECC protected memory

• Dedicated PCIe x16 connections

• Approximately 2.5 million logic elements, 6,800 DSP engines

AWS Provides:

● development environment

● hardware and software development kit

● high-end FPGA boards(UltraScale+ VU9P) on f1 instances

10

Presenter
Presentation Notes
For this project, we choose to use AWS for our development platform, this is because 1. 2.

Another main reason, we wanna to map this problem to multiple nodes. Although AWS still does not support this feature, it does state that it provides 3 types of FPGA connections and there’re 8 boards on f1.16x type istance. It does provide a design space we can exploit, the trade-offs and optimal design we can achieve.

Coarse-Grained Hardware Overlay

● Needs only be loaded once and used for
any garbled circuit problem

● Overlay with different number of AND, XOR
gates can be generated

● Coordinates with host C code at runtime

Garbled Circuit Hardware Design

11

Presenter
Presentation Notes
1 fig3 is the garbled circuit HW design, a schematic of our processing module. It contains … mem interfaces
2. The host needs to set the registers in FPGA to take control of state machine and issue the correct rd/wt addrs
3. The s m will read data either from DDR or BRAM and push them to the correct garbled cores, after the sm completes the run for a bunch, it collects results or garbling table for AND gates from the cores

Garbled Circuit workflow

● Preprocessing extracts layers and
translates wire IDs to memory addresses

● Preprocessing partitions the netlist and
maps them to FPGA

● Hardware overlay scales according to
number of Garbled AND and XOR cores

Garbled Circuit Workflow

12

Presenter
Presentation Notes

Partition the netlist and map them to FPGA resources,
compile once and \

Experiments

● The keys are directly generated for the evaluator

● The initial memory layout, FPGA mapping
information and runtime addresses are generated
for FPGA garbler

● The garbler and evaluator run on two different
nodes and the transfer time is estimated by f1
bandwidth

● We record the garbling time and evaluating time

13

Garbled Circuit Experiments

Benchmarks

Problem Inputs Outputs Layers Gates
16-bit add 32 16 48 80
30-bit HD 60 30 27 330
50-bit HD 100 50 32 550
8-bit multiply 16 8 57 472
16-bit multiply 32 16 121 1968
32-bit multiply 64 32 249 8032
64-bit multiply 128 128 505 32448
10 4-bit sort 40 40 278 5486
5x5 8-bit MM 400 200 57 63000
10x10 4-bit MM 800 400 27 126000
10x10 8-bit MM 1600 800 57 508000
20x20 4-bit MM 3200 1600 37 1016000

• Size of benchmarks

HD: Hamming Distance
MM: matrix multiply

14

Garbler Timing Speed up

15

• Garbler Timing Speed Up on AWS

Presenter
Presentation Notes
Table2 shows that if we change the python garbler to FPGA and the garbler only accesses data from DDR-only memory(read data from and store data back to DDR),
We also have the number of gates for each application,
The speedup is stable and roughly 15x times speedup

End to end runtime of FPGA garbler and software garbler

• End-to-end runtime system speed up on AWS (unit: ms)

16

Presenter
Presentation Notes
IF we consider the system as a whole, we calculate the total time, the speed up is roughly 2.5x -2.7x

Garbler timing of different designs

• Garbler with hybrid memory design and different number of cores on AWS (unit: ms)

17

Less is better !

Hybrid memory design
uses both off-chip and
on-chip memory

Conclusion

● We map Garbled Circuit to FPGA and the hardware design can scale to arbitrary number of
AND and XOR cores

● Our garbler gains speed up against software up to 18x for million gate examples

Future Work

● Replace the SHA-1 cores with AES cores

● Reduce host to FPGA communication

● Map this problem to multiple nodes for big-data processing

Conclusion and Future Work

18

Thank you!

Thanks to the support of AWS
Thanks to NSF (SaTC1717213)

email : huang.kai1@husky.neu.edu
https://www.northeastern.edu/rcl/

19

Presenter
Presentation Notes
Thanks to the AWS and NSF

https://www.northeastern.edu/rcl/

	Slide Number 1
	 Introduction and Motivation
	Slide Number 3
	Slide Number 4
	 Garbling an AND gate in Garbled Circuit
	 Yao’s Garbled Circuit
	 Garbled Circuit Optimizations
	 Yao’s Garbled Circuit
	 Challenges and Contributions
	 Amazon Web Service (AWS)
	Slide Number 11
	 Garbled Circuit workflow
	 Experiments
	Slide Number 14
	Slide Number 15
	
	Slide Number 17
	 Conclusion and Future Work
	Slide Number 19

