
Scaling and Quality of Modularity Optimization
Methods for Graph Clustering

Sayan Ghosh+, Mahantesh Halappanavar+, Antonino Tumeo+, Ananth Kalyanaraman*

+Pacific Northwest National Laboratory, Richland, WA
*Washington State University, Pullman, WA

Graph Challenge Innovation award
2019 IEEE High Performance Extreme Computing Conference

1

Graph Clustering (Community Detection)

• Problem: Given G(V,E,w), identify tightly knit
groups of vertices that strongly correlate to one
another within their group, and sparsely so,
outside.

• Modularity (Newman, 2004): A statistical measure
for assessing the quality of a given community-
wise partitioning P of the vertices V

2

Input :
Ø V = {1,2,… n }
Ø E: a set of M edges
Ø w(e): weight of edge e

(non-negative)
Ø m = S"eÎE w(e)

Output :
Ø A partitioning of V into

k mutually disjoint clusters
P = {C1, C2,… Ck}

Fraction of
intra-cluster

edges

Equivalent fraction
in a random graph

Notation Definition

C(i) Cluster containing vertex i

ei->C(i) Number of edges from i to vertices in C(i)

aC Sum of the degree of all vertices in cluster C

3

Louvain method (Blondel et al. 2008)

Multi-phase multi-iterative heuristic
Within each iteration:
• For every vertex i Î V:

1. Let C(i) : current community of i
2. Compute modularity gain (DQ) for

moving i into each of i’s neighboring
communities

3. Let Cmax : neighboring community with
largest DQ

4. If (DQ>0) { Set C(i) = Cmax }

Input: G(V,E,w)
Goal: Compute a partitioning of V that maximizes modularity (Q)
Initialize: Every vertex starts in its own community (i.e., C(i)={i})

Next
phase

Upon no further
modularity gain

5 4

3

2

1

Update on Distributed Louvain implementation : Vite

• Ported Vite to Intel KNL processors
on the ALCF Theta supercomputer
• KNL is dead, long live KNL: KNL served

as a precursor to modern multicore
systems with HBM

• Used KNL 16 GB MCDRAM as
addressable memory – allocated
some heavily used C++ containers on
MCDRAM

• Implemented a balanced graph
distribution to reduce overall
communication (by 80%) at the
expense of extra I/O

High standard deviation in #Edges/process means more imbalance 4

Vite results on ALCF Theta for billion-edge graphs

0-80% improvement in end-to-end execution time using the balanced distribution 5

Thanks

• US DoE ExaGraph project
• Battelle PNNL
• NSF award CCF 1815467 to Washington State University
• Argonne Leadership Computing Facility

6

Code: https://github.com/Exa-Graph/vite

https://github.com/Exa-Graph/vite

