

Scaling and Quality of Modularity Optimization Methods for Graph Clustering

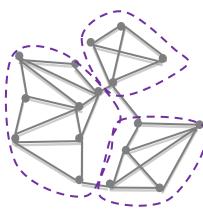
Sayan Ghosh⁺, Mahantesh Halappanavar⁺, Antonino Tumeo⁺, Ananth Kalyanaraman^{*}

*Pacific Northwest National Laboratory, Richland, WA
*Washington State University, Pullman, WA

Graph Challenge Innovation award 2019 IEEE High Performance Extreme Computing Conference

Graph Clustering (Community Detection)

 <u>Problem</u>: Given G(V, E, ω), identify tightly knit groups of vertices that strongly correlate to one another within their group, and sparsely so, outside.



WASHINGTON STATE

Input : $V = \{1, 2, ..., n\}$ E: a set of M edges $\omega(e): weight of edge e$ (non-negative)

 $\blacktriangleright m = \Sigma_{\forall e \in E} \omega(e)$

<u>Output :</u> \blacktriangleright A partitioning of V into k mutually disjoint clusters $P = \{C_1, C_2, \dots, C_k\}$ <u>Modularity (Newman, 2004)</u>: A statistical measure for assessing the quality of a given communitywise partitioning P of the vertices V

Notation	Definition
C(i)	Cluster containing vertex i
<i>e</i> _{<i>i</i>-><i>C</i>(<i>i</i>)}	Number of edges from <i>i</i> to vertices in <i>C</i> (<i>i</i>)
a _c	Sum of the degree of all vertices in cluster C

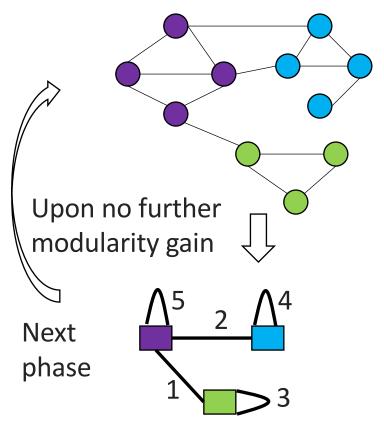
 $Q = \frac{1}{2m} \sum_{\forall i \in V} e_{i \to C(i)} - \sum_{\forall C \in P} \left(\frac{a_C}{2m} \cdot \frac{a_C}{2m}\right)$ Fraction of Equivalent fraction intra-cluster in a random graph

edges

Louvain method (Blondel et al. 2008)

<u>Input:</u> G(V,E,ω)

<u>Goal</u>: Compute a partitioning of V that maximizes modularity (Q) <u>Initialize</u>: Every vertex starts in its own community (i.e., $C(i)=\{i\}$)



Multi-phase multi-iterative heuristic

Within each iteration:

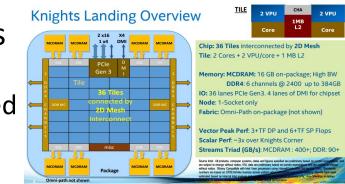
- For every vertex $i \in V$:
 - 1. Let *C*(*i*) : current community of *i*
 - 2. Compute modularity gain (ΔQ) for moving *i* into each of *i*'s neighboring communities
 - 3. Let C_{max} : neighboring community with largest ΔQ
 - 4. If $(\Delta Q > 0) \{ \text{Set } C(i) = C_{max} \}$

Update on Distributed Louvain implementation : Vite

• Ported Vite to Intel KNL processors on the ALCF Theta supercomputer

WASHINGTON STATE

- KNL is dead, long live KNL: KNL served as a precursor to modern multicore systems with HBM
- Used KNL 16 GB MCDRAM as addressable memory – allocated some heavily used C++ containers on MCDRAM
- Implemented a balanced graph distribution to reduce overall communication (by 80%) at the expense of extra I/O



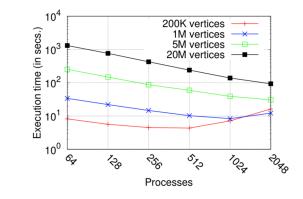
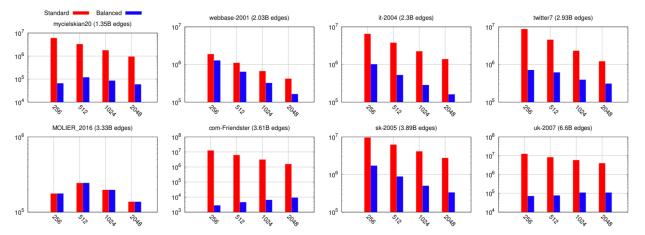
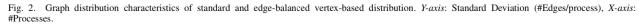


Fig. 1. Distributed Louvain clustering strong scaling results of highOverlaphighBlockSize challenge datasets on ALCF Theta.





High standard deviation in #Edges/process means more imbalance

Vite results on ALCF Theta for billion-edge graphs

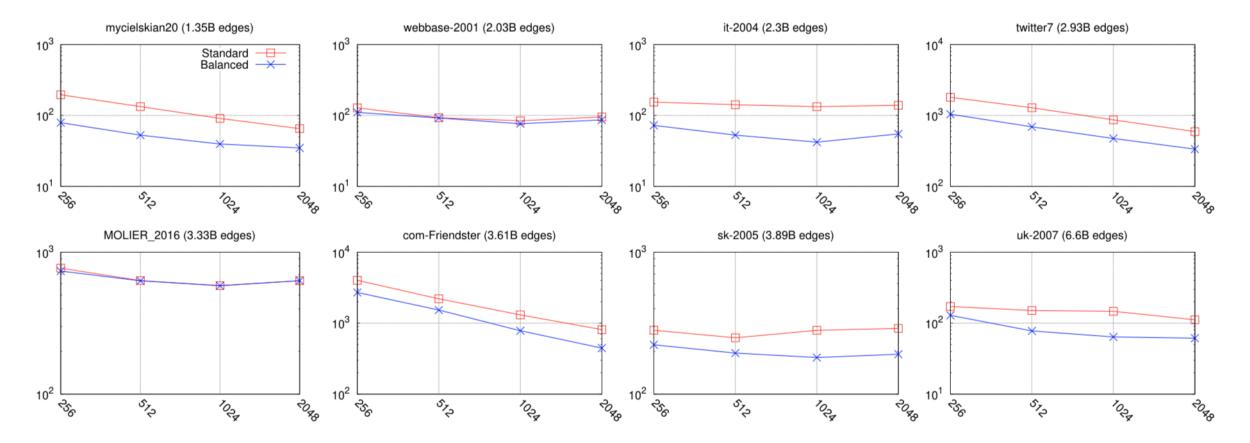


Fig. 3. Distributed-memory Louvain execution times of real-world graphs with over a billion edges, using the standard and edge-balanced graph distribution. *Y-axis*: Total execution time (in secs.), *X-axis*: #Processes.

0-80% improvement in end-to-end execution time using the balanced distribution

Thanks

- US DoE ExaGraph project
- Battelle PNNL
- NSF award CCF 1815467 to Washington State University
- Argonne Leadership Computing Facility

Code: https://github.com/Exa-Graph/vite