
Accelerating DNN Inference
with GraphBLAS and the

GPU
Xiaoyun Wang, Zhongyi Lin, Carl Yang, John Owens

UC Davis

Our Contributions
● We use GPU and GraphBLAST for Sparse DNN inference;
● Transposed FC layer:

Other than

● Filter out 0s after each layer, maintaining sparsity of activation matrices to 3%
matrix fill.

Presenter
Presentation Notes
The difficulty is that GPU has limit of memories so we use the following methods

Motivations
Why we want to use GPU

Graph problems are often bandwidth limited. GPUs provide greater achievable bandwidth on problem like
sparse MxM. For example the V100 GPU has a peak bandwidth of 900 GB/s

Why GraphBLAST

GraphBLAST is a GraphBLAS implementation on GPU, which is the first GraphBLAS implementation to
match the state-of-art in high-performance graph processing.

Why it is a right tool

GraphBLAST provides high-performance operators required to implement Sparse DNN inference

Presenter
Presentation Notes
GPU has huge potential in increasing the performance. NV Link provides the solution to connect up top 16 processors, thus for multi-GPU computing it will give good performance.

Why transposed FC works

Load Balance:

is always 32 nonzeroes per row, so there is no
load imbalance

Why the weight matrix has such a
characteristic:

● Kronecker Product and choice of W* in
Radix-Net.

● The number of nonzeroes of sparse weight
matrices is determined by the original dense
matrix.Nonzeroes per row in the activation matrix in

each layer of a 1024-neuron, 120-layer neural
network.

Presenter
Presentation Notes
To understand why this works, we need to look into the Radix-net paper
The sparse weight matrix is generated by the outer product of a dense weight matrix and a permutation of identity matrix I (noded as W* in the paper).
So it has fixed NNZ. Thus, Our method works for not only for the benchmark dataset, but also for all general sparse DNNs.

Why filtering out zeroes works
Filter Out Zeroes after each layer:

● Keep Sparsity of matrix;
● Reduce the computational cost of

computing on zeroes in the next layer;

Presenter
Presentation Notes
As we can see, without filtering out zeroes after several layers the activation matrix will become dense.
And it will also mitigate the GPU memory issues.

Performance Analysis of Each Operation
Non-matrix operators 16.6X speedup

● Add bias: 59.2X
● Clipping: 62.1X
● Relu: 5.44X

Sparse matrix multiplications

● 2X speedup over CPU
● Future works are needed

investigate the performance

	Accelerating DNN Inference with GraphBLAS and the GPU
	Our Contributions
	Motivations
	Why transposed FC works
	Why filtering out zeroes works

	Performance Analysis of Each Operation

