Update on K-truss Decomposition on GPU

<u>Mohammad Almasri¹</u>, Omer Anjum¹, Carl Pearson¹, Zaid Qureshi², Vikram S. Mailthody¹, Rakesh Nagi³, Jinjun Xiong⁴, Wen-mei Hwu¹

¹ ECE, ² CS, ³ ISE, University of Illinois at Urbana-Champaign, Urbana, IL 61801

⁴ Cognitive Computing & University Partnership, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598

Introduction

- **k-Truss**: is a cohesive subgraph in which each edge is part of at least k-2 triangles [1,2].
- This subgraph relaxes the concept of clique and can be computed in polynomial time.
- k-truss decomposition, peeling approach:

Single-GPU Optimizations (1/2)

```
Our 2018 implementation[3]:
```

```
k = kmin
                                                                 k = kmin
                                                                 while(true)
while(true)
                                                                   while(any affected)
 while(num affected edges > 0)
    ktruss_kernel(k, edges, deleted, affected, ...)
                                                                      any affected = ktruss kernel(k, edges, deleted, ...)
    num_affected_edges = count(affected)
                                               Unnecessary step!
  num_deleted_edges = count(deleted)
                                                                    num deleted edges = reduce add(deleted)
                                                                    if(num deleted edges == num edges)
  if(num deleted edges == num edges)
                                                                     break
    break
  else
                                                                    else
                                                                     if(num deleted edges/num edges > threshold)
    edges = stream_compaction(deleted, edges) Expensive operation !
                                                                      edges = stream_compaction(deleted, edges)
    num edges = num edges - num deleted edges
                                                                      num edges = num edges - num deleted edges
    k = k + 1
                                                                     k = k + 1
```

Our 2019 implementation:

'deleted' list: holds a flag for each edge to indicate whether the edge is deleted.

'affected' list: holds a flag for each edge to indicate whether the edge is affected by the deletion of any other edge with which it shares triangles.

Single-GPU Optimizations (2/2)

2018 implementation:

function ktruss_kernel(k, edges, del foreach (e in edges)	eted, affected,)	intersection. In 2019 implementation:	
tc = triangle_count(e) if(tc < k-2) deleted[e] = true affect_edges(e) 	<pre>function triangle_count(e) u = get_left_node(e) v = get_right_node(e) intersections = intersect(adj(u), adj(v)) return count(intersections)</pre>	 a) While doing triangle counting, record the indices of first and last intersections of the two adj. lists and use them in 'affect_edges' step: function affect_edges(e, u_first, u_last, v_first, v_last) intersections = intersect(adj(u), adj(v), u_first,) 	
	<pre>u = get_left_node(e) v = get_right_node(e) intersections = intersect(adj(u), adj(v)) foreach(i in intersections) affected[i] = true</pre>	b) In the triangle counting step, we start marking edges as 'affected' early once there is no hope to find k-2 triangles.	

Both *triangle_count* and *affect_edges* perform the same list

Multi-GPU Implementation

In 2018 submission:

	k=k1				
	GPU 0	GPU 1	GPU 2	GPU 3	
Graph Edges					
Deleted					
Affected					
Unified Memory					

Due to list intersection operations: Graph, 'Deleted', and 'Affected' lists are accessed randomly by all GPUs \rightarrow many redundant data transfers \rightarrow significant slowdown as we scale GPUs.

In 2019 submission:

- During the ktruss_kernel: graph data is readonly. 'cudaMemAdviseReadMostly' prevents redundant transfers of read-only data.
 - Slow migrations reduced and performance greatly improved.
- 'Deleted' and 'Affected' lists are read/write.
- Parallelize across k values:

	_GPU0_Deleted	_GPU2_Deleted			
	_GPU0_Affected	_GPU2_Affected			
	GPU1_Deleted GPU1_Affected	_GPU3_Deleted _GPU3_Affected			
Graph					
Unified Memory					

Binary-Search Approach to Find Maximum k

Algorithm:

- Evaluate for k=(kupper_bound + kmin)/2.
- If the graph is not empty, do stream compaction and set kmin = k
- Else, revert to previous state and set kupper_bound = k
- Stop when kupper_bound kmin <= 1.

Example: kupper_bound = 23, kmin = 3 If kmax=9

How to estimate kupper_bound? Find the largest degree d for which there are at least d + 1 nodes, kupper_bound = d+1.

Additional optimizations:

- Two evaluated k values can be far apart → before evaluating k, eliminate nodes with degree < k.
- To process large graphs, such as Twitter with 2.8B bidirectional edges:
 - Empirically, kmax > 5% of kupper_bound. Thus, before the first iteration, we remove nodes with out-degree < 5% of kupper_bound.

Evaluation Platform

- A node with Newell architecture from the NCSA HAL cluster.
 - 2 IBM Power9 CPUs each with
 - 20 Cores
 - 256GB of Memory
 - 4 NVIDIA Tesla V100 GPUs
 - CPUs & GPUs connected via NVLINK 2.0

Memory Management:

- All auxiliary data structures are stored in the unified memory.
- Allocated using cudaMallocManaged.
- CUDA unified memory hints:
 - cudaMemAdviseSetReadMostly
 - cudaMemAdviseUnsetReadMostly

Single-GPU results

■ 2019 Incremental vs. 2018 Incremental ■ 2019 Binary vs. 2018 Incremental

Multi-GPU Parallel Efficiency

Conclusion

- Optimizations for the single-GPU implementation: limiting unnecessary compactions, reductions, and list intersection comparisons.
- Scalable multi-GPU implementation by using memory hints and parallelizing across k.
- Maximum k-truss, through binary-search rather than the incremental approach.

Compared to our 2018 work [3]:

Single-GPU:

Our incremental approach improves performance up to **35.2x** (**6.9x** on average).

Our binary approach improves performance up to **101.5x** (**24.3x** on average).

Multi-GPU:

We improve performance up to **151.3x (78.8x** on average).

The binary-search finds kmax for "Twitter" graph (2.8B bidirectional edges) in just 16 minutes on a single V100 GPU.

References

[1] J. Cohen. *Trusses: Cohesive subgraphs for social network analysis*. In *National Security Agency Technical Report*, page 16, 2008.

[2] J. Cohen. *Graph twiddling in a MapReduce world.* In *Computing in Science & Engineering*, 11(4):29-41, 2009

[3] V. S. Mailthody, K. Date, Z. Qureshi, C. Pearson, R. Nagi, J. Xiong, and W. Hwu, "Collaborative (cpu + gpu) algorithms for triangle counting and truss decomposition," in 2018 IEEE High Performance extreme Computing Conference (HPEC), Sep. 2018, pp. 1–7.

Thanks

