
Update on K-truss Decomposition on GPU
Mohammad Almasri1, Omer Anjum1 , Carl Pearson1 , Zaid Qureshi2, Vikram S. Mailthody1, Rakesh Nagi3, Jinjun Xiong4,
Wen-mei Hwu1

1 ECE, 2 CS, 3 ISE, University of Illinois at Urbana-Champaign, Urbana, IL 61801
4 Cognitive Computing & University Partnership, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598

 k-Truss: is a cohesive subgraph in which each edge is part of at least k−2 triangles [1,2].
 This subgraph relaxes the concept of clique and can be computed in polynomial time.
 k-truss decomposition, peeling approach:

Introduction

2

Single-GPU Optimizations (1/2)
k = kmin
while(true)

while(num_affected_edges > 0)
ktruss_kernel(k, edges, deleted, affected, …)
num_affected_edges = count(affected)

num_deleted_edges = count(deleted)
if(num_deleted_edges == num_edges)

break
else

edges = stream_compaction(deleted, edges)
num_edges = num_edges - num_deleted_edges
k = k + 1

Our 2018 implementation[3]:
k = kmin
while(true)

while(any_affected)
any_affected = ktruss_kernel(k, edges, deleted, …)

num_deleted_edges = reduce_add(deleted)
if(num_deleted_edges == num_edges)

break
else

if(num_deleted_edges/num_edges > threshold)
edges = stream_compaction(deleted, edges)
num_edges = num_edges - num_deleted_edges

k = k + 1

Our 2019 implementation:

Unnecessary step !

Expensive operation !

3

‘deleted’ list: holds a flag for each edge to indicate whether the edge is deleted.
‘affected’ list: holds a flag for each edge to indicate whether the edge is affected by the deletion of any other edge with which it shares triangles.

Single-GPU Optimizations (2/2)
2018 implementation:
function ktruss_kernel(k, edges, deleted, affected, …)

foreach (e in edges)
if(!deleted[e] && affected[e])

tc = triangle_count(e)
if(tc < k-2)

deleted[e] = true
affect_edges(e)

….

function triangle_count(e)
u = get_left_node(e)
v = get_right_node(e)
intersections = intersect(adj(u), adj(v))
return count(intersections)

function affect_edges(e)
u = get_left_node(e)
v = get_right_node(e)
intersections = intersect(adj(u), adj(v))
foreach(i in intersections)

affected[i] = true

Both triangle_count and affect_edges perform the same list
intersection.
In 2019 implementation:

a) While doing triangle counting, record the indices of
first and last intersections of the two adj. lists and use
them in ‘affect_edges’ step:
function affect_edges(e, u_first, u_last, v_first, v_last)

intersections = intersect(adj(u), adj(v), u_first,…)

b) In the triangle counting step, we start marking edges
as ‘affected’ early once there is no hope to find k-2
triangles.

4

In 2018 submission:
Multi-GPU Implementation

5

Due to list intersection operations:
Graph, ‘Deleted’, and ‘Affected’ lists are accessed
randomly by all GPUs many redundant data transfers
significant slowdown as we scale GPUs.

In 2019 submission:
– During the ktruss_kernel: graph data is read-

only. ‘cudaMemAdviseReadMostly’ prevents
redundant transfers of read-only data.

• Slow migrations reduced and performance
greatly improved.

– ‘Deleted’ and ‘Affected’ lists are read/write.
– Parallelize across k values:

Binary-Search Approach to Find Maximum k

6

Algorithm:
- Evaluate for k=(kupper_bound + kmin)/2.
- If the graph is not empty, do stream compaction and set kmin = k
- Else, revert to previous state and set kupper_bound = k
- Stop when kupper_bound - kmin <= 1.
Example: kupper_bound = 23, kmin = 3
If kmax=9

How to estimate kupper_bound? Find the largest degree d for which
there are at least d + 1 nodes, kupper_bound = d+1.

Additional optimizations:
• Two evaluated k values can be far apart → before evaluating k,

eliminate nodes with degree < k.
• To process large graphs, such as Twitter with 2.8B bidirectional

edges:
• Empirically, kmax > 5% of kupper_bound. Thus, before the first

iteration, we remove nodes with out-degree < 5% of
kupper_bound.

 A node with Newell architecture from the NCSA HAL cluster.
– 2 IBM Power9 CPUs each with

• 20 Cores
• 256GB of Memory

– 4 NVIDIA Tesla V100 GPUs
– CPUs & GPUs connected via NVLINK 2.0

Memory Management:
– All auxiliary data structures are stored in the unified memory.
– Allocated using cudaMallocManaged.
– CUDA unified memory hints:

• cudaMemAdviseSetReadMostly
• cudaMemAdviseUnsetReadMostly

Evaluation Platform

7

Single-GPU results

6.5

11.5

5.4

35.2

3.3

6.8
8.7

5.8

12.5

8.7
7.1

10.3
8.3

10.3

7.1

11.3
9.6 9.4

5.4

3.0 2.9 2.9

4.9 4.7 4.6

2.6
2.2 2.1 2.2

3.9

2.4
2.7

3.1

6.9

10.2

57.7

22.6

60.6

5.9

12.4

59.7

44.1

101.5

19.9

80.1

42.5

17.9

10.1

13.8

24.1

17.9 17.0

5.3

2.6 2.5

54.4

7.3 6.9 6.6

2.2

17.0
13.7

15.8

4.5

9.9

14.5

19.5
24.3

1

2

4

8

16

32

64

128

Sp
ee

du
p

(L
og

 S
ca

le
)

2019 Incremental vs. 2018 Incremental 2019 Binary vs. 2018 Incremental

2019 optimizations in incremental approach improves performance up to 35.2x (6.9x
on average) compared to 2018 submission.

Binary-search algorithm finds k-max up to 101.5x (24.3x on average) faster compared
to 2018 submission!

Binary-search algorithm finds the maximum k-truss for “Twitter” graph having 2.8
billion bidirectional edges in just 16 minutes on a single V100 GPU!!

8

Multi-GPU Parallel Efficiency

Multi-GPU optimization improves performance up to 151.3x (78.8x on average)
compared to 2018 multi-GPU implementation.

9

Conclusion
• Optimizations for the single-GPU implementation: limiting unnecessary compactions,

reductions, and list intersection comparisons.
• Scalable multi-GPU implementation by using memory hints and parallelizing across k.
• Maximum k-truss, through binary-search rather than the incremental approach.

10

Compared to our 2018 work [3]:
Single-GPU:

Our incremental approach improves performance up to 35.2x (6.9x on average).
Our binary approach improves performance up to 101.5x (24.3x on average).

Multi-GPU:
We improve performance up to 151.3x (78.8x on average).

The binary-search finds kmax for “Twitter” graph (2.8B bidirectional edges) in just 16 minutes on a single V100 GPU.

[1] J. Cohen. Trusses: Cohesive subgraphs for social network analysis. In National Security Agency Technical
Report, page 16, 2008.
[2] J. Cohen. Graph twiddling in a MapReduce world. In Computing in Science & Engineering, 11(4):29-41,
2009
[3] V. S. Mailthody, K. Date, Z. Qureshi, C. Pearson, R. Nagi, J. Xiong, and W. Hwu, “Collaborative (cpu + gpu)
algorithms for triangle counting and truss decomposition,” in 2018 IEEE High Performance extreme Computing
Conference (HPEC), Sep. 2018, pp. 1–7.

References

11

Thanks ….

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12

