
Lossless Compression of Internal Files 
in Parallel Reservoir Simulation

Suha Kayum

Marcin Rogowski

Florian Mannuss

9/26/2019



2

• I/O Challenges in Reservoir Simulation

• Evaluation of Compression Algorithms on Reservoir Simulation Data

• Real-world application

- Constraints

- Algorithm 

- Results

• Conclusions

Outline



3

Challenge
Reservoir simulation

1



4

Reservoir Simulation

• Largest field in the world are represented 
as 50 million – 1 billion grid block models

• Each runs takes hours on 500-5000 cores
• Calibrating the model requires 100s of 

runs and sophisticated methods
• “History matched” model is only a 

beginning



5

• Internal Files

• Input / Output Files

- Interact with pre- & post-processing tools

Files in Reservoir Simulation

Date Restart/Checkpoint Files



6

• 100’000+ simulations annually

• The largest simulation of 10 billion cells

• Currently multiple machines in TOP500

• Petabytes of storage required

• Resources are Finite

• File Compression is one solution

Reservoir Simulation in Saudi Aramco

50x

600x



7

Compression algorithm evaluation

2



8

Tested a number of algorithms on a GRID 
restart file for two models

- Model A – 77.3 million active grid blocks

- Model K – 8.7 million active grid blocks

- 15.6 GB and 7.2 GB respectively

Compression ratio is between 

- From 2.27 for snappy (Model A)

- Up to 3.5 for bzip2 -9 (Model K)

Compression ratio

0

0.5

1

1.5

2

2.5

3

3.5

4

Model A Model K
co

m
pr

es
sio

n 
ra

tio

lz4 snappy gzip -1 gzip -9 bzip2 -1 bzip2 -9



9

• LZ4 and Snappy significantly outperformed other algorithms when it comes to runtime 
overhead

• Compression ratio of LZ4 was 14-34% worse than bzip2 variant

- Overhead was 117-138 times smaller when it comes to compression

• 34s vs 4680s for 15.6GB

- Overhead 19-23 times smaller when decompressing

Compression speed

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Model A Model K

tim
e 

(s
)

lz4 snappy gzip -1 gzip -9 bzip2 -1 bzip2 -9

0

100

200

300

400

500

600

700

Model A Model K

tim
e 

(s
)

lz4 snappy gzip -1 gzip -9 bzip2 -1 bzip2 -9



10

Real-world

3



11

• Fitting within a framework of a large, pre-existing application

• Limiting the number of files

• Parallel implementation

• Compression ratio – runtime overhead balance

Constraints

Compression 
ratio

Runtime



12

Algorithm

Index structure pointing to the start of the individual 
compressed chunks in the restart file.

Compression Method 1 Double or integer arrays interpreted directly as character arrays

Compression Method 2 (Default)
• Arrays are reordered where all first bytes of double-precision values are stored in one 

array, the second bytes in another one and so on.
• Create 8 arrays, each corresponding to the Nth

byte of every floating-point value
• Reduces the entropy of sub-arrays that might be 

introduced due to the IEEE floating-point 
standard

• 8 arrays are compressed individually
Illustration of array reordering with the aim to 
reduce entropy.

Indexing
• After compression, writer processes exchange 

compressed array sizes and write all 
compressed chunks to file

• An index file is created by writers sending their 
chunk sizes to the writer with lowest rank



13

• The median model compressed with a 
ratio of 3 with the mean at 3.6. 

• Cumulative size of restart GRID files 
was reduced from 

- 680 GB to 232 GB 

- compression ratio of 2.93

Real-world results

• Tested on 500+ synthetic and real-field models that encompass varying model 
features and sizes

• Lowest compression efficiency resulted in a ratio of 1.47

• Best-case scenario, the ratio exceeded 25



14

Conclusions

• Storage and performance challenges of recurrently writing massive restart files 
in a parallel reservoir simulator are described and addressed using compression

• Evaluated a number of lossless compression algorithms 

• LZ4 and Snappy performed the best in terms of compression speed resulting in 
less runtime overhead (LZ4 chosen)

• Compression was implemented in parallel 

• Reduced storage requirements and increased efficiency

- In some cases, the overall runtime was reduced, i.e. compressing and writing 
to disk is faster than writing raw data to disk

• Shifting the load from interconnect and storage to performing additional 
computation is in line with predicted trends in the high-performance computing 
where compute capabilities are expected to grow at a higher rate than any other 
supercomputer component




