
Breadth-First Search on Dynamic Graphs using
Dynamic Parallelism on the GPU

Dominik Tödling
Graz University of Technology

Graz, Austria

dominik.toedling@student.tugraz.at

Martin Winter
Graz University of Technology

Graz, Austria

martin.winter@icg.tugraz.at

Markus Steinberger
Graz University of Technology

Graz, Austria

steinberger@icg.tugraz.at

Abstract—Breadth-First Search is an important basis for many
different graph-based algorithms with applications ranging from
peer-to-peer networking to garbage collection. However, the
performance of different approaches depends strongly on the
type of graph. In this paper, we present an efficient algorithm
that performs well on a variety of different graphs. As part of
this, we look into utilizing dynamic parallelism in order to both
reduce overhead from latency between the CPU and GPU, as well
as speed up the algorithm itself. Lastly, integrate the algorithm
with the faimGraph framework for dynamic graphs and examine
the relative performance to a Compressed-Sparse-Row data
structure. We show that our algorithm can be well adapted to
the dynamic setting and outperforms another competing dynamic
graph framework on our test set.

Index Terms—Breadth-first search, GPU, graphs, dynamic
parallelism

I. INTRODUCTION

Breadth-First Search (BFS) is a strategy for traversing

graphs and can be used as a basis for solving various graph

problems, such as single-source shortest path or finding con-

nected components. It starts at a single node and proceeds to

explore all other nodes in the graph in order of distance from

the first node. Thus, first the starting node’s neighbors are

explored, then the neighbors’ neighbors, and so on. The typical

single-threaded algorithm uses a so-called frontier queue to

remember which nodes to explore next. In each step it takes

one item from the queue, searches its neighbors for any

undiscovered nodes, and adds those to the end of the queue.

As the underlying graph domains are growing in size,

holding tens of millions of vertices and millions to even

billions of edges, the need for massively parallel hardware like

the graphics processing unit (GPU) arises. Since this hardware

is now in frequent use and also comparatively inexpensive,

the GPU fits this problem domain perfectly. Additionally,

since clock speed has hit the so-called power wall [17] while

the transistor count keeps growing, a significant speedup can

only be expected by exploiting the parallelism inherent in

such applications. Achieving good performance on modern,

massively parallel hardware like the GPU can be challenging.

This is especially true when dealing with graphs with a wide

ranging degree distribution, as naive approaches fail to balance

the workload accordingly. Furthermore, the non-coalesced

memory access pattern and the low arithmetic load are a

challenging problem. As a result, BFS is the first benchmark

in the Graph500 [10] list of the HPC graph community.

This paper presents the main challenges of parallel BFS

and presents a complete algorithm that is competitive with

other recent implementations. We combine and build upon

approaches from previous work to arrive at our solutions

for work efficiency and workload distribution and also in-

vestigate the efficacy of using dynamic parallelism to split

the uneven workload across threads. Finally, we integrate the

final algorithms with the dynamic graph framework faimGraph
and examine the changes required to do so, as well as

their performance impact. The algorithms described here are

implemented using CUDA and may use a Compressed-Sparse-

Row (CSR) data structure or the page-based adjacency layout

of faimGraph. A graph’s CSR representation consists of three

arrays: One contains all the graph’s edges, another the weights

of all edges, and one more containing an offset into the edge

array for each node. This means all outgoing edges of a node

are always stored consecutively in memory, which is important

to achieve efficiency on the GPU. As BFS does not take edge

weights into account, only the edge and offset array are used.

faimGraph stores its adjacency data on pages linked together

into a linked-list of pages, resulting in consecutive memory

accesses within pages but incurring some overhead due to the

page traversal.

We show that our approach adapts well to both the static as

well as the dynamic data structure, staying within a range of

5− 10%. Our usage of dynamic parallelism, efficient frontier

queues locally and globally as well as our classification

scheme produces great results, outperforming a competing

dynamic graph framework for a variety of problem domains.

II. RELATED WORK

Related work on algorithms on graph data structures for the

GPU can be roughly categorized into static (not supporting

dynamic graph updates) and dynamic graph libraries as well

as GPU-adapted implementations of different algorithms for

BFS.

A. Static Graph Frameworks on the GPU

There exist a number of different static graph libraries on

the GPU: nvGraph [14] (NVIDIA Graph Analytics library),

offers implementations of widely-used algorithms, supporting

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

billion-edge graphs (using an NVIDIA Tesla M40 with 24

GB). BlazeGraph [18] presents a high-performance graph

database built on its own domain-specific language DASL.

BelRed [4] offer a library of software building blocks, address-

ing the challenges and manual effort required to set up graph

applications. GasCL [3] presents a vertex-centric graph model,

supporting the ”think-like-a-vertex” programming model, built

using Open Compute Language (OpenCL). Gunrock [19] is a

CUDA framework for graph processing, building on highly

optimized operators, trying to achieve a balance between

applicability and performance.

B. Dynamic Graph Frameworks on the GPU

As a lot of problem domains build on highly volatile data

sets, changing vertices as well as edges, a few notable dynamic

graph frameworks were introduced in recent years. The first

dynamic graph framework introduced was cuSTINGER [8].

cuSTINGER is a GPU-adaptation of STINGER [7] and its

internal memory manager. Adjacencies are managed as in-

dividual arrays, enabling efficient memory access within an

adjacency but requiring individual allocation procedures to

increase/decrease a current allocation state per adjacency.

Furthermore, memory cannot be efficiently reused within the

system. aimGraph [21] removes this restriction by shifting

the memory management to the GPU, requiring only a single

allocation on the host and managing memory using a page-

based allocation scheme. This allows for very efficient updates

directly on the GPU, but introduces some page traversal

overhead and memory is not reusable as well. Hornet [2]

lifts this limitation by limiting the length of an adjacency to

a power of two and managing such blocks in auxiliary data

structures on the CPU, enabling efficient reuse of freed up

blocks of memory. The adjacency itself is stored in an array-

like format. GPMA [15] is a novel dynamic graph framework

building on an adapted version of a Packed Memory Array,

supporting efficient stream updates with implicit sorting. The

data structure is allocated with a single allocation, but ad-

ditional effort is required to maintain the data structure after

updates and traversal is hampered by non-contiguous memory.

faimGraph [20] is the newest addition to dynamic graph frame-

works and continues with the efforts of aimGraph by enabling

fully-dynamic updates, efficient memory-reuse directly on the

GPU as well as algorithmic validation using Static Triangle

Counting and PageRank. This allows for efficient updates as

well as coalesced memory access within pages, but introduces

a bit of overhead due to the page traversal required.

C. BFS Implementations on the GPU

BFS was first demonstrated on the GPU by Harish and

Narayanan [9] in an exploration of using CUDA to accelerate

common graph algorithms. Their implementation traverses

the graph in levels, maintaining an array for visited status,

one for frontier status, and one more for distance from the

starting node. In each iteration each vertex is then assigned

a thread, which checks its frontier status and updates the

distance value for all its neighbors if it is in the frontier.

Deng et al. [6] later showed a BFS algorithm based on

their implementation of Sparse Matrix-Vector Multiplication

which outperformed current GPU algorithms, but both of these

algorithms performed more than the asymptotically optimal

amount of work.

To solve this, Luo et al. [12] first demonstrated a multi-

tier approach to constructing a frontier queue on the GPU,

where queues are first assembled on a warp-level, then block-

level, and finally on a global level. Once such a queue is

finished, it can be used to examine only the current frontier

nodes and their corresponding edges in each iteration. In their

approach, warp-level queues require atomics, however, due

to the fact that the hardware they were working with could

only schedule 8 threads at a time, while a warp consists of

32, they were able to organize these accesses in such a way

that simultaneously scheduled threads did not collide with one

another. Once the warp-level queues are constructed, they then

use a single thread to calculate the offset of the 8 warp-level

queues that make up a block-level queue. Using those offsets

each warp copies its queue into the block-level queue. Finally,

a single atomic increment on a global queue pointer is used

to reserve space for each block-level queue before copying.

They also introduced a strategy of hierarchical kernel man-

agement, where a different synchronization strategy is used

depending on the frontier size. For frontiers up to the block

size they use the simple block-level synchronization provided

by CUDA, as well as maintain the frontier queue entirely in

shared memory. Once that size is exceeded, they switch to

a different strategy described by Xiao and Feng [22], which

allows synchronization between blocks as long as there is a

maximum of one block per multiprocessor. Only then is the

synchronization provided by separate kernel launches used.

Later work done by Merrill et al. [13] shows a more

comprehensive approach, which tackles both vertex- and edge-

level parallelism, as well as performing an asymptotically

optimal amount of work and being multi-GPU compatible.

Their algorithm maintains an explicit vertex queue, as well

as an edge queue. Instead of inspecting the neighbors of the

current frontier-vertices immediately, they instead aggregate

them into a global edge-queue. This queue is then filtered

to remove previously-visited and duplicate vertices before

either being immediately expanded again or placed into a

global vertex queue depending on the frontier size. They

also demonstrate the effectiveness of prefix sum as a way of

determining per-thread offsets when building a global queue

structure, which they use for both their vertex and edge queue.

In the gathering part of the algorithm (expanding the vertex

queue into an edge queue), they start by assigning one vertex

to each thread, but then have all threads with large nodes vie

for control over the entire block by writing to the same address

before synchronizing. The last thread to perform the write then

has its vertex explored. This is repeated on the warp level for

nodes larger than the warp width. Finally, adjacencies of small

nodes are shared within each block by their assigned threads,

copying them into shared memory, before jointly checking

them. This results in efficient utilization of all threads.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

A different algorithm was introduced by Liu and Huang [11]

which also incorporates bottom-up BFS to save on the amount

of edges that need to be traversed [1]. During the top-down

and direction switching phase of their algorithm they do not

produce a new frontier queue each iteration to use as input

for the next, but rather scan the status array to generate

the frontier queue at the beginning of each iteration. In the

bottom-up phase they instead simply place all vertices that

did not have any visited neighbors into the queue for the next

iteration. This is possible because with bottom-up BFS the

next frontier queue is always a subset of the current queue.

Their approach to edge-level parallelization is also different,

relying on classification of vertices based on their number of

neighbors to determine how many threads to assign to each.

They use four separate frontier queues to represent the classes,

assigning either one thread, warp, block, or the entire grid to

work on each node in a queue.

Lastly, Zhang et al. [23] investigate using dynamic par-

allelism to implement BFS. They use two kernels in their

implementation, an outer kernel that iterated over all vertices

to check their frontier status, and an inner kernel to iterate over

the adjacency of a single vertex. This results in a very simple

implementation which they can then expand with various

experimental improvements. Their final algorithm utilizes the

warp-level cooperation scheme described by Merrill et al. [13]

and shows comparable performance to an implementation of

Merrill’s algorithm up to scale 19 on the Graph500 bench-

mark [10], but falls off sharply at larger scales.

III. PARALLELIZING BFS

When parallelizing BFS, there are two main points to con-

sider: Work efficiency and workload distribution. As creating

and maintaining a complex data structure on the GPU is

often difficult, a naive implementation might forego an explicit

frontier queue and instead simply check the frontier status of

each node in each iteration. This can work well enough for

shallow graphs, however, for large-diameter graphs it means

that each vertex is examined many times. The other challenge

becomes apparent when considering how many threads to

assign to each adjacency. In a naive algorithm, one thread

might handle one complete adjacency, however, this means

that the largest node in each depth step slows down the entire

iteration as everything has to wait for a single thread to

finish before the next iteration can start. This section presents

solutions to both of these problems, introducing an explicit

frontier queue to keep track of the current search frontier as

well as more efficient workload distribution.

A. The Frontier Queue

In order to produce a work-efficient algorithm, an explicit

frontier queue is required so that only the nodes currently in

the frontier can be examined.

As described in section II-C, Luo et al. [12] first demon-

strated an approach to generate such a structure, however,

our work uses an approach closer to the one described by

Merrill et al. [13]. Each thread keeps track of discovered

Fig. 1. Diagram of individual thread frontiers and how they are arranged into
the global queue.

vertices in its registers and an exclusive prefix-sum is used

to calculate the block-level offsets for each thread. The last

thread in each block then reserves space in the global queue

with an atomic addition, before each thread copies its thread

queue directly into the global queue, as shown in Figure 1.

This means only a single atomic operation is required per

block and the discovered nodes are only copied once. There

is also an additional cost, however, as it is now important

to avoid duplicates when discovering new nodes. In order to

achieve this, we replace the look-up in the depth array for a

vertex’s status with an atomic compare-and-swap. As these

accesses are typically distributed randomly across the graph,

the chance of multiple threads wanting to access the same

node at the same time in this manner is low, meaning little to

no performance impact on average. This process allows each

iteration to produce a list of vertices the next iteration can then

examine, eliminating unnecessary frontier status checks.

B. Distributing Workload

With an explicit frontier queue in place, it now becomes

important to distribute the work of checking edges for undis-

covered vertices evenly across threads. Not only is it necessary

for good overall performance, but using the process described

above, each thread can only check so many edges before it

runs out of registers to store new vertices in.

Our first attempt at tackling this involved a technique called

dynamic parallelism. In a CUDA program, kernels are typi-

cally launched from the host, that is, the CPU, however using

dynamic parallelism, new kernels can be launched from within

other kernels. This enables an approach where, whenever a

thread is assigned to check a large adjacency, it delegates

the work to a new kernel rather than checking it itself. To

determine whether to launch a new kernel the adjacency

size is compared to a fixed threshold value, beyond which

a separate kernel is used. In theory, this is a relatively simple

way to dynamically and fairly distribute workload, however,

in practice, this results in very inconsistent results due to

the large overhead involved in kernel launches. Compared to

a naive approach it performs better on a variety of graphs

but comes with its own weaknesses. Most importantly, for

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

Fig. 2. Comparison between deferred and immediate classification and the
algorithm implemented by the GPMA framework.

graphs that have a consistently high out-degree the kernel

launches become the dominant performance bottleneck and

the algorithm slows down considerably. In these cases the

performance also becomes quite erratic, subsequent test runs

often varying in timing by a factor of 2 or more, most

likely due to the irregular scheduling pattern for the increased

number of kernel launches. Clearly, a more refined scheme is

required for how to distribute work across threads evenly. We

chose to go with an approach similar to the one proposed by

Liu and Huang [11], where frontier nodes are classified into

different queues based on their size. Each of these queues is

then handled by a different kernel with different parameters

for how many threads to assign to each node. Similar to Liu

and Huang, we sort vertices into one of four classes: Small

(one thread), medium (one warp), large (one block), or huge

(the entire grid). The precise thresholds are determined by the

number of edges an individual thread should check. 4 worked

well for for most graphs in our experiments, however some

performed better with another value, sometimes by a quite

considerable factor. The measurements presented here were

all made with a value of 4 edges per thread. A significant

difference to the aforementioned approach is that we perform

all the steps directly on the GPU using dynamic parallelism,

foregoing any CPU intervention.

For the small, medium, and large classes the number of

threads launched per vertex is constant and equal to the

threshold value, however for the huge class the necessary

number of threads varies depending on the size of the node.

It is possible to simply launch a separate kernel for each huge

node and calculate the appropriate grid size for each, however

for certain types of graphs - such as power law graphs - this

can result in many thousands of kernel launches within a single

iteration. To avoid this we decided to base the number of

threads per huge vertex on the largest vertex currently in the

huge frontier. A parallel reduction algorithm is applied to the

sizes of these vertices to find the maximum and then a single

kernel is launched with a configuration based on that value.

This results in some unnecessary threads when the range of

sizes within the huge frontier is large, however it still provides

better performance than launching individual kernels.

In the algorithm presented by Liu and Huang, they rebuild

the frontier queue by processing the complete status array in

each iteration and so do the classification then. In our work

we implemented two different versions, one with deferred

classification as a separate pre-processing step between iter-

ations, and one where classification takes place immediately

upon discovering a new vertex. For deferred classification this

means a total of five frontier queues are necessary: one has

new vertices pushed onto it for the next iteration, and the other

four are filled in the classification step. Each of those is then

passed to a separate kernel for processing.

Immediate classification requires a total of eight queues as

each class has one queue that is currently being processed and

one that is being constructed for the next iteration. This also

means that each thread has to keep four separate thread-level

queues in its registers, further limiting the number of edges

each thread can explore. As a further optimization we keep a

set of shared variables within each block that signals whether

any vertices of a certain size were discovered and only perform

the queue-filling process for each class where this flag is set.

Figure 2 shows a comparison between these two approaches,

as well as the implementation provided by the GPMA frame-

work for working with dynamic graphs [15]. Their algorithm

is based on the work done by Merrill et al. [13] and per-

forms well on a wide variety of graphs. Due to the dynamic

data structure of GPMA there is some overhead involved in

traversing an adjacency that is not present using a CSR format,

however the comparison serves well to show how different

approaches show varying performance on different workloads.

The plot also shows quite clearly that immediate classi-

fication performs much better, often outperforming deferred

classification by a factor of 2 or more with otherwise similar

performance characteristics. All measurements shown in the

graph were made with the same configuration for the number

of edges per thread, however the ideal number varies from

graph to graph and, for some, tweaking this parameter can

lead to significant speedups.

IV. INTEGRATING BFS WITH faimGraph

faimGraph is a fully-dynamic framework, supporting both

vertex as well as edge updates efficiently. Edges are stored

on pages linked together in a linked list, as can be seen in

Figure 3. For this work, only the destination of an edge is

relevant and all other edge data is omitted. This storage format

is the biggest difference compared to competing approaches,

which enables faster update rates directly on the device,

but introduces additional challenges to algorithms such as

BFS. Array-like adjacencies, like CSR, store all edges in a

single array, where edges within a vertex adjacency reside

in contiguous memory and adjacent threads can be served

efficiently with coalesced memory access.

In order to achieve similar efficiency on a dynamic data

structure with a page-based adjacency management, a few

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

Fig. 3. Edges within faimGraph are stored on pages linked together by indices.

adjustments to the algorithms are required. Exploring an

adjacency with a single thread works nearly identical to array

traversal. The framework provides edge data iterators which

can be incremented until the last edge is reached, automatically

resolving the page traversal in the process. Since the page size

is fixed for an instance of faimGraph, ideally a single page can

be read by threads within a warp at the same time. Hence, each

work group (consisting of a warp) first calculates the page

its target edge is located on, before one thread performs the

page traversal to this page. Only then will the threads within a

warp resolve the edge data iterator to its corresponding edge.

This results in coalesced memory access for threads within

a warp, with the same memory access patterns as with CSR.

Nonetheless, some overhead is introduced by the need to first

traverse the page lists to access the correct page, as can be seen

Fig. 4. Performance comparison between the classification version running
on CSR and faimGraph.

Name Nodes Edges Depth
wikipedia-20070206 3,566,907 45,030,389 460

rgg n 2 21 s0 2,097,152 28,975,990 1147

msdoor 415,863 19,173,163 127

in-2004 1,325,741 16,917,053 47

hugetric-00020 7,122,792 21,361,554 2800

hugebubbles-00020 21,198,119 63,580,358 4500

europe osm 50,912,018 108,109,320 17346

delaunay n21 2,097,152 12,582,816 564

coPapersCiteseer 434,102 32,073,440 26

cage15 5,154,859 99,199,551 500

audikw 1 943,695 77,651,847 55

af shell9 504,855 17,588,845 472

TABLE I
GRAPHS USED TO EVALUATE PERFORMANCE OF DIFFERENT ALGORITHMS.

SHOWS NUMBER OF NODES, EDGES, AND ITERATIONS REQUIRED TO

COMPLETELY TRAVERSE THE GRAPH STARTING AT NODE 0.

in Figure 4. This overhead depends on the sparsity diversity

within the graph and is on average around 10% for our test

set, dependent on the average out-degree within the graph.

V. EVALUATION

Table I shows the test set used to evaluate the performance

of our algorithm. All graphs were taken from the SuiteSparse

Matrix Collection [5] and the chosen graphs cover a wide

range of sizes, diameters, and densities.

Figure 5 shows performance measurements for both clas-

sification versions for CSR and faimGraph, measured on an

NVIDIA GTX 2080 Ti. Overall, our algorithm performs well

for many different types of graphs, slowing down only for

very large numbers of vertices in a single iteration. While

the algorithm implemented by GPMA only ever launches a

bounded number of threads we simply calculate the required

number of threads based on the number of vertices in each

class. This means for very large frontier queues the added

scheduling overhead of handling so many threads slows down

our algorithm. The graphs wikipedia-20070206 and cage15 are

examples of this, the former having just a few iterations with

hundreds of thousands of medium vertices, thousands of large

vertices, and several hundred huge vertices. In total this results

in well over 20 million threads launched, the largest portion

of which are produced by the medium frontier.

Our experiments also showed that performance was also

improved by running the main loop directly on the GPU, uti-

lizing dynamic parallelism. This saves having to copy back the

necessary information to determine whether the last iteration

discovered any new vertices and is as simple as launching

a one-thread kernel to handle managing the iterations. For a

naive algorithm this speedup ranged from a few percent to up

to 2 times faster in our measurements. This same approach

was investigated before by Zhang et al. [23], however they

found a slowdown of up to 44%. It is unclear why this is the

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

Fig. 5. Comparison of all variants described in this paper, as well as the algorithm implemented by GPMA.

case, however our results remained consistent across multiple

devices and architectures.

A differentiating factor not mentioned so far is the memory

footprint of each version. The naive version only requires

an additional array with one entry for each node, while the

dynamic parallelism version requires the same status array

plus space for its frontier queues, one that is currently being

processed and another that is being filled. As a single iteration

could potentially have effectively the entire graph as its fron-

tier, each queue is also allocated enough space for every node.

The deferred classification version requires five queues in total,

one for each of the four classes, as well as the queue for the

next iteration. Immediate classification further increases this to

eight queues, as each class requires a queue for current frontier

vertices and those for the next iteration. This is still typically

less than that of approaches maintaining an explicit edge

queue, such as the one implemented by the GPMA framework.

In our test set with 12 graphs from different application

domains (including street networks, sparse matrices, citation

graphs, triangulation graphs and more), our implementation

outperforms the competing dynamic graph framework GPMA
in 10 out of 12 cases. On average, the speed-up of faimGraph
to GPMA is 78%, ranging from 0.37 to 3.1 times.

VI. CONCLUSION

We present an efficient BFS algorithm capable of out-

performing competing implementations, covering solutions to

both work efficiency and work distribution. Our classification-

based approach to work distribution was adapted to immedi-

ately add newly discovered vertices to a frontier queue, which

proved to be more efficient than performing classification in

a separate step. Dynamic parallelism was examined for its

ability to reduce unnecessary latency when running the main

loop on the GPU and we discussed how using it purely for

work distribution leads to mixed results, requiring more so-

phisticated classification for competitive performance. Finally,

all algorithms were integrated with the faimGraph framework

and the overhead introduced by its paged data structure found

to be comparatively low, outperforming a BFS implementation

on a competing dynamic graph framework, GPMA.

A. Future Work

While the final algorithm described here shows competitive

performance on a wide variety of graphs, there are still several

possible enhancements. While our approach can effectively

skip costly round trips to the GPU between iterations of the

BFS, avoiding the iteration-like processing altogether may

increase performance further. To this end, a dynamic schedul-

ing framework could help to naturally advance through the

graph [16]. Another possible enhancement would be incor-

porating the idea of bottom-up Breadth-First Search demon-

strated by Beamer et al. [1] and adapted for the GPU by Liu

and Huang [11]. A hybrid approach that switches from top-

down BFS to bottom-up BFS once a switching criterion is

met can reduce the number of edges that need to be checked.

As the algorithms were integrated with faimGraph, a natural

next step would be to investigate partially updating a previous

BFS result after a change to the graph. This could include

tying the BFS implementation closer to the framework and

observing changes to the adjacencies, which can further guide

the exploration phase later on.

ACKNOWLEDGMENT

This research was supported by the German Research Foun-

dation (DFG) grant STE 2565/1-1, and the Austrian Science

Fund (FWF) grant I 3007. The GPU for this research was

donated by NVIDIA Corporation.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

REFERENCES

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-
first search. Scientific Programming, 21(3-4):137–148, 2013.

[2] F. Busato, O. Green, N. Bombieri, and David A. Bader. HORNET:
An efficient data structure for dynamic sparse graphs and matrices on
GPUs. In 2018 IEEE High Performance Extreme Computing Conference
(HPEC ’18). Georgia Institute of Technology, 2018.

[3] S. Che. GASCL: A vertex-centric graph model for GPUs. In 2014 IEEE
High Performance Embedded Computing Conference (HPEC ’14), 2014.

[4] S. Che, B. M. Beckmann, and S. K. Reinhardt. BelRedbel: Constructing
GPGPU graph applications with software building blocks. In 2014 IEEE
High Performance Embedded Computing Conference (HPEC ’14), 2014.

[5] T. A. Davis and Y. Hu. The university of florida sparse matrix collection.
ACM Transactions on Mathematical Software (TOMS), 38(1):1, 2011.

[6] Y. Steve Deng, B. David Wang, and S. Mu. Taming irregular EDA
applications on GPUs. In Proceedings of the 2009 International
Conference on Computer-Aided Design, pages 539–546. ACM, 2009.

[7] D. Ediger, R. McColl, J. Riedy, and D. A. Bader. STINGER: High
performance data structure for streaming graphs. In 2012 IEEE High
Performance Extreme Computing Conference (HPEC ’12). Georgia
Institute of Technology, 2012.

[8] O. Green and David A. Bader. cuSTINGER: Supporting dynamic
graph algorithms for GPUs. In 2016 IEEE High Performance Extreme
Computing Conference (HPEC ’16). Georgia Institute of Technology,
2016.

[9] P. Harish and P. Narayanan. Accelerating large graph algorithms on the
GPU using CUDA. In International Conference on High-Performance
Computing, pages 197–208. Springer, 2007.

[10] The Graph500 List. Graph500 BFS lists. https://graph500.org/?page
id=514. Accessed: 2019-02-03.

[11] H. Liu and H. H. Huang. Enterprise: Breadth-first graph traversal on
GPUs. In 2015 SC-International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–12. IEEE, 2015.

[12] L. Luo, M. Wong, and W. Hwu. An effective GPU implementation
of breadth-first search. In Proceedings of the 47th Design Automation
Conference, pages 52–55. ACM, 2010.

[13] D. Merrill, M. Garland, and A. Grimshaw. Scalable GPU graph traversal.
In ACM SIGPLAN Notices, volume 47, pages 117–128. ACM, 2012.

[14] NVIDIA. nvGraph. https://developer.nvidia.com/nvgraph, 2016. Ac-
cessed 2107-05-12.

[15] M. Sha, Y. Li, B. He, and K. Tan. Accelerating dynamic graph analytics
on GPUs. Proceedings of the VLDB Endowment, 11(1):107–120, 2017.

[16] Markus Steinberger, Michael Kenzel, Pedro Boechat, Bernhard Kerbl,
Mark Dokter, and Dieter Schmalstieg. Whippletree: Task-based schedul-
ing of dynamic workloads on the gpu. ACM Trans. Graph., 33(6):228:1–
228:11, November 2014.

[17] H. Sutter. The free lunch is over: A fundamental turn toward concurrency
in software. Dr. Dobb’s journal, pages 202–210, 2005.

[18] LLC SYSTAP. BlazeGraph. https://www.blazegraph.com/, 2017. Ac-
cessed 2017-05-01.

[19] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens.
GunRock: A high-performance graph processing library on the GPU. In
ACM SIGPLAN Notices, vol. 50, 2015.

[20] M. Winter, D. Mlakar, R. Zayer, H. Seidel, and M. Steinberger.
faimGraph: high performance management of fully-dynamic graphs
under tight memory constraints on the GPU. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage, and Analysis, page 60. IEEE Press, 2018.

[21] M. Winter, R. Zayer, and M. Steinberger. Autonomous, independent
management of dynamic graphs on GPUs”. In 2017 IEEE High
Performance Extreme Computing Conference (HPEC ’17). University
of Technology, Graz, 2017.

[22] S. Xiao and W. Feng. Inter-block GPU communication via fast barrier
synchronization. In Parallel & Distributed Processing (IPDPS), 2010
IEEE International Symposium on, pages 1–12. IEEE, 2010.

[23] P. Zhang, E. Holk, J. Matty, S. Misurda, M. Zalewski, J. Chu, S. McMil-
lan, and A. Lumsdaine. Dynamic parallelism for simple and efficient
GPU graph algorithms. In Proceedings of the 5th Workshop on Irregular
Applications: Architectures and Algorithms, page 11. ACM, 2015.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

