
Open Source Multi-functional Memory Unit and
Application to Approximate Computing

Shigetoshi Nakatake
The University of Kitakyushu, Fukuoka 808-135, Japan

Email: nakatake@kitakyu-u.ac.jp

Approximate computing is one of promising computation
techniques which returns a possibly inaccurate result rather
than a guaranteed accurate result. Conventionally, this kind
of inaccurate computing is allowed for software. However, as
growing mobile and embedded devices, the border of software
and hardware implementation is no longer strict. We propose
a novel multi-functional memory unit which can reconfigure
a function of the memory decoder, which is applicable to
approximate computing. In our reconfigurable mechanism,
uni-switch cells are introduced to play an alternative role of a
logic or a wire, and are embedded in an SRAM array. Hence,
an extensional function of the decoder is realized by PLA
units inside the memory array, and is used for approximate
computing. 1 Furthermore, we demonstrate an implementation
of our idea on OpenRAM which is an open-source SRAM
array compiler.
A) Uni-switch: A typical PLA is composed of AND- and OR-
planes, and realizes a logic in the form of the sum-of-product
[1]. An example is illustrated in Fig. 1. The most important
feature is to realize a multi-input multi-output function, which
is suitable for a decoder and an encoder. The programmability
of the conventional PLA is implemented by anti-fuses between
the nMOS transistors and the wires, but it is like a one-time
writing memory. It is preferable that logic and wiring can
be reconfigured from external signals by utilizing re-writable
memories such as SRAMs like a recent LUT-type FPGA. We
introduce a uni-switch to PLA as shown Fig. 2(a). It enables
us to change the connection patterns by the external signal A,
B and C. The connection patterns are shown in Fig. 2(b).
B) PLA embedded in Memory: In our idea, we superimpose
a PLA and an SRAM array. We can configure a logic through
the conventional SRAM I/O interface, as well as we can set
the input and read the output of the logic circuit via the
interface. Combining a uni-switch and three SRAM cells as
one programmable cell as shown in Fig. 3, we embedded uni-
switches onto a memory array as illustrated in Fig. 4.

Furthermore, all structures of our PLA-based memory unit
are generated automatically utilizing OpenRAM introduced
in https://openram.soe.ucsc.edu/home, and we demonstrate
simulation results for several test data. A generation flow is
demonstrated in Fig. 4.

1The preliminary of this work is introduced in N. Yahiro, B. Liu, A.
Nanri, S. Nakatake, Y. Takashima, G. Chen, A multi-functional memory
unit with PLA-based reconfigurable decoder, Proc. in ReConFig 2016, DOI:
10.1109/ReConFig.2016.7857145. [2]

VDD

VDD VDD

X2 X3

VDD

X1 X4 Y1 Y2 Y3

w1 w2 w3 w4 w5 w6 w7 w8

w9 w10 w11

w14

w13

w12 n1 n2

n3 n4

n5 n6

n7 n8

n9 n10

n11 n12

product-wire

sum-wire

input-wire

AND-plane OR-plane

Fig. 1: An example of PLA corresponding to Y1 = X̄2X4 +
X3X4, Y2 = X̄2X4 + X̄1X3, and Y3 = X̄1X3 +X3X4.

VDD

A

A

B

B

CC

MA1
MB1

MC1

MC2

MB2

MB3

MA2

MA3

X X’

Y’

Y

!"!

#"!

#!

!! !!

!"!

#"!

#!

!"!

#"!

!!

#!

!"!

#"!

!!

#!

$%&!

$'&! $(&!

$)&!

Fig. 2: Uni-switch and four cases of connections.

All structures of the PLA-based memory unit are gen-
erated automatically utilizing OpenRAM introduced in
https://openram.soe.ucsc.edu/home [3]. Fig. 4 illustrates archi-
tecture of memory-array generated by the original OpenRAM.
In this environment, we need to prepare a bit-cell and several
logic primitives by ourselves. In this work, we extend a bit-
cell as containing a uni-switch. As shown in Fig. 3, three
bit-cells and a uni-switch are combining into one layout. Note
that this is an mp-cell. After generating memory-unit in the
original environment, we replace a set of three bit-cells by the
mp-cell.
D) Multi-functional Memory: Since our PLA can be embed-
ded in an memory array, the decoder PLA and the memory to
store data can be integrated into one SRAM array as shown in
Fig. 5. Here, we have a switch matrix outside the SRAM array.
The signal ’s’ switches two modes of the circuit behaviour,

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

!!

!!

"!

"!

#!
#!

$%!

$!

&! &%!

'! '!

()!

(*!

(+!

,-!./0122!

3456708194:0! 3;5624<=>?!

Fig. 3: Memory programmable(mp)-cell combining 3-bit cells.

!"#$%&'"(#)*""'+!

,-./01)2/3)*""'+!

4"56#)7"58#")*""'+!

9#1:#)*0;)*""'+!

4
-
"<
$.
51
#
)7
"5
8
#
" !

*
<
<
"#
::
)7
#
%-
<
#
" !

,-16"-.)

=-(5%!

>56),#..)*""'+!

0;$%#..!

?;#1@*2!

!7A)

,-1B(!

2#0-"+)C156)

2/.D$

E/1%D-1'.)

2#0-"+)C156)

@#;.'%#)#8#"+)F)G56$%#..:))

G+)'1)0;$%#..!

Fig. 4: Memory unit generation with OpenRAM.

normal mode and pre-decoder mode, as follows;
(i) normal mode (s=0): the address data (a0, a1, a2, a3) is
directly mapped to (a′0, a

′
1, a

′
2, a

′
3) and then the memory array

behaves as normal without a pre-decoder.
(ii) pre-decoder mode (s=1): the address data (a0, a1, a2, a3)
is transferred to (x0, x1, x2, x3) of pre-decoder input. The pre-
decoder is realized by PLA. Then, the output of pre-decoder
(y0, y1, y2, y3) is transferred to (a′0, a

′
1, a

′
2, a

′
3). This means

we can realize a function yi = fi(x0, x1, . . . , xk) in the pre-
decoder.
E) Approximate Computing: In an application of approx-
imate computing, let a complicated function be y = f(x)
,where x is in terms of n-bits. The size of table-look-up to
store y for each x is 2n. For saving the size, we introduce a
decode function x′ = g(x) where x′ < x, and the decoder
function is realized by PLA. Hence, the complicated function
is expressed as y = f(g(x)).

In this work, for the application to approximate computing,
we assume a complicated function demonstrated in Fig. 6(a),
which is hard to be represented by a numerical formulation
but a set of input and output. Since the input is a floating-
point value, we need the floating-point-to-address decoder
for realizing this function by our memory-array architecture.

!
"
#
$
!
"
%&

'%()"&!%(*"%&+&,%"-#./%0"%&

!12&

/12&
/13&
/14&
/15&

!13& !14& !15& !16& !17& !18& !19&

!2& !3& !4& !5& !6& !7& !8& !9&

/2&
/3&
/4&
/5&

:&

:
'
()#
.
&;
/
)%(<
&

:)$%"!&
!/)/&

%='&

>?@-(A&

,%"-
!"#$!"%&

BC&>?@&

>?@-$D)&

:"A:"&/;,E(F("%&

<2&<3& <4&<5&

C2&C3& C4&C5&

Fig. 5: PLA-based pre-decoder in Memory

Hence, we design a decoder to convert a 6-bit floating-point
value to an appropriate memory address, where the exponent
is 01, 10, the mantissa is 0000-1111. Hence, the floating-point
values 1, 1.0625, 1.125 1.9375, 2.125 3.875 are converted
to 32 consecutive addresses. We implement this decoder by
PLA corresponding to the truth-table shown in Fig. 6(b),
which is a logic of converting a floating-point-to-address. We
verify a function implemented on the memory-array by circuit
simulation for a netlist combining OpenRAM and PLA-based
decoder. The simulation result (Fig. 6(c)) convinces us the
function works well. Note that our PLA-based pre-decoder
can be reconfigured to various input formats of approximate
functions.

(c) (b)

(a)

Fig. 6: An example of approximate function: (a) a curve of
function, (b) a truth-table of PLA decoder logic, (c) simulation
result.

REFERENCES

[1] H. Flesher and L. I. Maissel, An introduction to array logic, IBM Journal
of Research and Development, Vol. 19, pp.98–109, 1975.

[2] N. Yahiro, B. Liu, A. Nanri, S. Nakatake, Y. Takashima, G. Chen, A
multi-functional memory unit with PLA-based reconfigurable decoder,
Proc. in ReConFig 2016, DOI: 10.1109/ReConFig.2016.7857145.

[3] R. Guthaus, J. E. Stine, S. Ataei, B. Chen, B. Wu, M. Sarwar, OpenRAM:
An Open-Source Memory Compiler, Proc. of the 35th International
Conference on Computer-Aided Design (ICCAD), 2016 (OpenRAM:
https://openram.soe.ucsc.edu/)

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

