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Abstract—Acceleration by Field-Programmable Gate Array
(FPGA) continues to be deployed into data center and edge
computing hardware designs; the tools and integration for ac-
celerating computationally-intensive tasks continue to increase in
practicality. In this paper, we build on previous work in applying
machine learning to automatically tune the transformation of
high-level language (HLL) C code by a High Level Synthesis
(HLS) system to generate an FPGA hardware design that runs
at high speed. This tuning is done primarily through the selection
of code transformations (optimizations) and an ordering in which
to apply them. We present more detailed results from the use of
reinforcement learning (RL), and improve on previous results in
several ways: by developing additional strategies that perform
better and more consistently, by normalizing the learning rate
to the frequency of new (yet untried) action sequences, and by
informing the model from aggregate statistics of optimization
sub-orderings.

Index Terms—Compiler Optimization, FPGA, High Perfor-
mance Computing, Machine Learning, High Level Synthesis

I. INTRODUCTION

Custom circuit designs have facilitated high-performance
computation since the beginning of electronic computation.
Typically a custom circuit is needed to implement functions
that are not implemented in a CPU instruction set or any
existing coprocessor(s).

Inasmuch as hardware design is difficult for CPU program-
mers, and cumbersome even for experienced logic designers,
high-level synthesis (HLS) was developed, incorporating lan-
guages, techniques, and tools that facilitate the conversion of a
CPU program into a custom circuit design. Such HLS methods
are used for both application-specific integrated circuit (ASIC)
and FPGA designs. Being rapidly reprogrammable, FPGAs in
particular are exploited for workload flexibility to broaden the
range of applications, including use by customers and other
third parties. The FPGA is therefore appearing in a greater
variety of HLS-applicable use-cases including cloud comput-
ing nodes and edge devices. We consider these applications to
be particularly amenable to tolerate the raised abstraction level
and inevitable reduction in performance (longer run times, and
greater energy usage) from using HLS methods. 1

HLS began with a state-machine driven data flow pipeline
model, analogous to a very long instruction word (VLIW)
CPU design with operations scheduled as in Tomasulo [1],
with the addition of modulo scheduling [2], and appears to

1There are many solutions that generate hardware for specific types of work,
such as signal processing, encryption, compression, machine learning kernels,
etc.; but these are not universal C compilers and do not address our goals.

have emerged almost seamlessly out of the behavioral style of
Hardware Description Languages (HDLs); in its current form
it was demonstrated at least as early as 1998 [3]. Modern day
tools continue to use this model. Important differences, and
greatest opportunities for exploitation of parallelism, exist in
the ability to make the pipeline far wider than was possible
in any VLIW CPU, along with the deepening, replication, and
coupling of those pipelines.

HLS tools are capable of emulating a shared-memory
parallel architecture similar to a multi-core processor (CPU
or GPU), using multiple kernel processors and interposed
data FIFOs. For C programs performing greatly parallelizable
computations, previous research [4] found that the multi-kernel
design is only an intermediate step in the set of transformations
needed to achieve the shortest run time. The final transformed
code has a single data flow pipeline with as much “width” as
possible for the problem at hand. For example, multiplying
a 10 × 10 matrix by another can produce a pipeline that
performs 1000 multiplications simultaneously, if the device
size allows for it. HLS tools that use multiple kernels or
threads (whether explicitly defined in the C code from the
user, generated to fulfill user-supplied pragmas, or inferred in
some automatic way by the tools) produce multiple concurrent
hardware modules (that correspond to threads in the CPU
model, or kernels in a GPU model) with communications
overhead lengthening run times.

The primary deployment target for our research is the
conversion of a CPU program written in C or C++ via
HLS tools into a hardware design for FPGA. The sequential
imperative model of those languages restricts such tools to
the rules implemented by CPU compilers, to ensure semantic
correctness, maintain data dependencies, avoid hazards from
address aliasing, etc. HLS tools therefore often use CPU
compilers, generating code in an intermediate representation
(IR) that can be optimized in all the same ways as CPU
assembly language, but for an arbitrary processor design with
unlimited registers and combinational logic units, with the
result converted into multiple stages of sequential logic with
registers between pipeline stages, and all controlled by a
state machine. Higher speed is achieved via loop unrolling,
vectorization, simultaneous calculation prior to conditional
tests (speculative execution), and similar means. It makes
sense to apply such transformations more times than would
be useful in any single core of a CPU. Furthermore there is
no instruction decoding or penalties for taking branches, and
no need to predict branches or to maintain a branch target



cache.
For these reasons this research is directed at the tasks of

choosing a set of compiler optimizations and an ordering in
which to perform them, allowing for any transformation to
be applied multiple times, without the CPU-specific biases
inherent in compiler options such as -O3. These are heavily
researched questions commonly called the selection and or-
dering problems; see e.g. [5], [6] of which the latter discusses
machine learning (ML) approaches. For both problems the
number of choices is huge, precluding an exhaustive search,
leading to the use of automatic learning techniques. That
research addresses CPU-like targets that invariably lack hard-
ware pipelines for many (rare but useful) computation tasks,
and CPUs have architectural limitations such as a small num-
ber of user registers, the need to decode instructions, a need for
branch prediction and a branch target cache, etc. Therefore the
research results on the selection and ordering problems serves
to inspire but not to answer the present problem. For similar
reasons the heuristics embodied in compiler tools, including
the orderings invoked by -O3 and the like, apply to CPUs but
not to hardware design in general.

It is therefore necessary to find new machine learning
models to generate FPGA-tuned answers for the selection and
ordering questions, for any computation task in C. Such is the
method of AutoPhase [7], [8] and [9], which we summarize
now as they are the most relevant antecedents to the present
work:

• In [7], [9], reinforcement learning (RL) is used to train a
multilayer perceptron (MLP) model

• The model is allowed to select a sequence of code
transformations

• A C program is compiled using the selected optimiza-
tions, using HLS tools

• The HLS tools provide an estimated cycle count for the
execution of the program by an FPGA

• Models are trained on each of the nine programs marked
CHStone and LegUp in Fig.3

• Some sequence of transformations achieves the lowest
cycle count; for each program this is compared against
previous non-RL results [10]–[12]

• In the 2020 work [8] similar experiments are conducted
using a random forests model [13]

Another approach (in progress) is to apply supervised
learning approaches; these involve the use of tagged models of
the input program and the generation of large input sets (viable
randomly-generated code samples that are representative of the
work suitable and desirable for an FPGA).

The work in this paper uses RL to discover solutions to the
selection and ordering problems for existing single programs.
This allows for discovery of what is possible or achievable in
the ideal case of a supervised model that manages to achieve
the best performance (shortest execution time) for any input
of interest.

The contributions of this work, as compared to [7]–[9] are:
• exploration of a greater range of the parameters governing

the complexity of the selection and ordering problems
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• use of pure reinforcement learning to encourage unique
selections and orderings for each unique program

• refinement of data analysis to better expose learning rate
and speed of output design

• conducting several experiments per configuration to en-
able standard deviation measures

• evaluating results in relation to the null case of no
optimization transformations (-O0) rather than the CPU-
specific -O3

• clarification of earlier work in general and of some of the
specific program results

• exploring new variations in agent models, in partic-
ular, long-short-term memory (LSTM), Deep-Q Net-
work (DQN), and Asynchronous Advantage Actor-Critic
(A3C); and

• augmenting the test suite with additional classes of rele-
vant programs (using floating-point and a structured grid
computation)

The remainder of this paper is organized as follows: the
next section (II) gives background on the methods of earlier
work; Section III introduces the methods of this work; Section
IV describes the procedure including details relevant to our
contributions; Section V presents results and discusses their
significance.

II. BACKGROUND AND PRIOR DESIGN

A. Reinforcement Learning (RL)

Reinforcement learning is an approach to ML that is well-
suited to problems for which open-ended exploration is needed
and there is no effective way to determine the correctness of
an answer except to try it and observe the result. Refer to
Fig.1(a): the RL approach defines an Agent, being that part of
the system that contains the ML model and parameters (which
are often distinguished as the Policy), and an Environment
comprising everything else including in particular that which
the agent takes as its input, called the observation(s). The agent
takes actions, which together with environment completely
determine how well the problem is solved. Ideally, the obser-
vation(s) should include all information that might influence



the agent’s ability to make the best choice. This could involve
large amounts of processing and analysis—perhaps more than
is practical.

For example, if the agent is learning to play chess against
a human, the environment includes the private thoughts of
the human player, which are unknowable; but also the board
position and knowledge of what moves have occurred so
far—these could be thoroughly analyzed by playing out every
possible game; but that is impractical. RL takes the approach
of amassing experience through accumulated data from many
observations, actions, and outcomes.

Each observation is given to the agent, which outputs an
action; together this is called a step; at appropriate times
(e.g. each step, or at the end of a set of steps called an
episode) the environment supplies a scalar numeric reward
to the agent representing the degree of success or failure.
In the chess example the episode lasts until the last turn in
the game, when the agent gets a positive or negative reward
according to who won. The mathematics of Markov decision
processes [14] show that this structure works, and a multilayer
perceptron [15] can implement the information storage and
decision calculations. See e.g. [16], [17] for background and
[18] for examples.

B. Environment: Compilation and Performance Estimation

In [8], [9] the environment consists of a specific C program
(constant throughout each particular experiment), a C com-
piler, an HDL code generator, and an evaluation algorithm to
compute a run time measured in clock cycles. This is similar to
that in Fig.2 though other parts of that figure apply only to the
present work. The C compiler is capable of performing code
transformations (optimizations) in any desired order, allowing
any transformation to occur multiple times or not at all. The
HDL code generator creates hardware modules expressed in
Verilog, with two modules per C function, one containing the
calculations on data and the other containing a finite state
machine that implements the function’s loops and conditional
statements. The run time evaluation profiles the C program
on the native CPU to discover how many times each basic
block is executed, and combines this with timing information
given by the HDL generator, to determine the total number
of clock cycles that the hardware design needs to run the C
program. This works because the HDL code generator retains
the sequential imperative structure of the original C program
at all levels above that of the basic block.

C. Agent, Actions, Observation, Reward

In [8], [9] the main results come from an RL agent using
PPO (proximal policy optimization), and results are compared
to simpler models (the -O0 and -O3 orderings, a “greedy”
model adding whichever code transformation produces the
best improvement over those already applied, a random forests
model, and application of just a single code transformation).

The best results of [8] employ an observation that includes
both the histogram of actions taken so far and a “feature
vector”. The histogram of actions is similar to that in Fig.1(b),
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Fig. 2: Compilation and evaluation steps. As described in the
text, the use of memoizing is new for this work, and enables
most of the steps to be skipped; the use of Fmax is also new
to this work.

though other parts of that figure apply only to the present work.
The feature vector is composed of counts of instruction types
and data types, like those used in [19], [20].

III. DESIGN AND MODEL IN THIS WORK

A. Environment: Compilation, Performance Estimation

The details of the environment and calculation of rewards
are illustrated by Fig.2.

Taking a list of code transformations (optimizations) chosen
by the agent, the target C program is compiled into IR, which
is then evaluated by three different methods:

• A checksum to determine whether the compilation gen-
erated a program equivalent to one seen before,

• An executable using the back end suitable for the host
CPU, to validate correctness and to conduct profiling,

• HDL code using a hardware-specific back end, along
with an Fmax frequency estimate for a target FPGA, and
reports from which a cycle count can be calculated.

As in [8], [9] a combination of profiling and per-module
clock cycle calculation is used to calculate an overall cycle
count without the need for full simulation in ModelSim or the
like. In this work, the Fmax and cycle count are combined to
calculate run time as cycles/Fmax .

B. Agent, Actions, Observation, Reward

Referring now to Fig.1(b): The actions from the agent, used
to select code transformations, are also counted in a histogram
in which each element of the histogram counts the number
of times a certain action (code transformation) was selected.
This histogram is a fixed-length vector, given to the agent as
its observation.

When the experiment begins, the program is compiled once
with the default (null) optimization option -O0, and execution
time is calculated as cycles/Fmax for use in comparison to
later attempts. Rewards given to the agent are of three types:

• When the agent has taken enough actions to comprise an
episode (given the specific episode length being used in
the current experiment) the program is compiled, and the
reward given is runtimeO0 − runtimethis where this
represents this compilation, with each run time calculated
as cycles/Fmax



• If it is not the last step in the episode, in second-order
training experiments (section IV-B8), a reward is given
based on pairs of actions in the current (partial) actions
list

• Otherwise, a reward of zero is given.
If enough steps (actions) have been taken to make up

an episode, a new episode is begun by clearing the action
histogram. The observation vector (action histogram) and
reward(s) are given to the RL training framework, which
gives the observations to the agent on each step and uses
the reward(s) to calculate adjustments to the MLP model
(policy) via backpropagation. Together, these influence the
agent’s choices in subsequent episodes.

IV. PROCEDURE

A. Overview

Twelve benchmark C programs designed specifically for
evaluating HLS were used, including all of those in the
earlier works cited [7]–[9]. Evaluation of machine learning
ability is conducted similarly to [21] and [8], with several
methodological improvements listed below. The subject pro-
grams are compiled by Clang/LLVM and GCC compilers
within the LegUp [22], [23] hardware design system version
4.0, generating both IR and Verilog HDL code. A run time
is computed as described earlier. The run time is used to
calculate rewards given to an RL agent running within the
Ray framework RLLib library [24], [25] within OpenAI Gym
[21], [26]. The agent is trained in batches of 4000 steps,
with weight backpropagation after each batch. All available
LLVM code transformations (of those used for optimization)
are considered as choices for the selection problem, and can be
used in any order with repeats. As described earlier, the agent’s
environment is given a vector of the code transformations
chosen thus far, up to a finite length corresponding to the
action limit for the particular experiment. Each vector element
is an integer index into the set of possible optimizations, as in
[8], except for the final -terminate item that is not an actual
LLVM option. When the vector is full, the target C program
is compiled and evaluated as described earlier.

B. Optimizations, Data Normalization and Other Adjustments

The results in this paper are obtained with all of the
following changes, as compared to earlier work [9]:

1) Multiple Experiments per Configuration: To evaluate the
significance of random fluctuations in the learning process,
each experiment is run five times using random seeds 3 to 7
inclusive.

2) Semantic Validation: All target programs are modified as
needed to check their own results against an expected correct
answer and output a pass/fail message. Programs that fail
give a negative reward, scaled to be as bad as a working
program that is twice as slow as -O0. A false “pass” result
is possible. Exploration of auto-generated orderings brings
up several risks: compilers are not designed for arbitrary
nonstandard orderings and often emit semantically incorrect

output programs [27]; flawless detection of such output is a
“halting problem”.

Similar problems arise when trying to determine a candidate
output program’s run time through static analysis rather than
by running it (either in simulation or on some target hardware).
This is the second reason why every output program (in IR
form) must be executed at least once.

3) Much Wider Range of Episode Lengths: The episode
length, corresponding to the maximum number of code trans-
formations that might be used to compile the target program, is
varied over six values from 7 to 45 in geometric progression.
These six variations appear in six different colors in Fig.4.

4) Learning Rate Normalization by Compilations Per-
formed : The effectiveness of an RL agent to find optimum
answers for each target program is evaluated from the trend in
achieved run time as a function of a “time-like” progression
represented by the horizontal axis in the Fig.4 plots. This
“time-like” axis is typically in training steps, episodes, or
batches, or can be actual elapsed time when running the train-
ing on particular hardware; but careful thought should be given
to the effects on agent learning rate that arise from varying the
rate of reinforcement feedback (from varying episode length),
subject program (complex programs fail semantic validation
more often), and other parameters.

To a first approximation, using episodes as the timescale
is good because it is only at the end of an episode that the
subject program can be compiled, getting new information
(the program’s run time) from which the agent can learn. As
compilation takes up most of the time, this use of timescale
closely reflects real-world time. Conversely, counting steps
(or equivalently batches of some number of steps e.g. 4000)
imposes a bias on the “time-like” axis, in which smaller
episode lengths will appear to have a higher training rate
because they gain more information per step (or batch) by
performing more compilation evaluations.

5) CRC caching and timescale adjustment: Compiling the
target program into HDL code and profiling take a much
greater amount of time than the RL framework (inference
and backpropagation). Therefore, a memoizing technique is
used to remember program run times based on a hash of the
IR generated early in the HLS-to-HDL compilation process.
In Fig.2 the IR file adpcm.prelto.2.bc is the result of all
the optimizations in the particular sequence that has been
generated by the agent’s choices (actions). This is the sole
input for all later operations, including: compiling to run on
a CPU for semantic validation (the box labeled gcc); and
generating a hardware design (labeled LegUp). Before either of
these relatively time-consuming tasks is done, a 32-bit hash of
the IR file is computed by the ISO/IEC 8802-3:1989 algorithm.
If a match is found, the previous cycles/Fmax value is used.

The probability of a false positive match is about 1/232 for
any pair of IR files, and a hash collision becomes likely if
more than about 216 hashes are generated. When a collision
happens, it would cause the agent to receive a reward that
does not properly reflect the result for that particular trial
compilation, causing a small bias in the agent’s training. This



is unlikely to happen, as these experiments are ended after
about 213 episodes.

Respecting the fact that the agent is often repeating past
actions, and therefore not learning as much, a cached result
counts 2% as much as a new result for the purpose of deciding
how far to move on the horizontal (“time-like”) axis. This is
reflected in the data plots and learning rate evaluations.

6) Clock Speed Normalization: For some of the target
programs, the choice of code transformations causes great
differences in the speed at which the HDL design can run. This
results from differences in memory access patterns (for those
programs that work on data arrays declared in one function
and then used in a called function), and differences in depth
of combinational logic. To ensure that the agent does not
minimize cycle count at the expense of vastly lower frequency,
the Fmax value given by the LegUp back end is combined
with the cycle count and converted to a time interval in units
of 20ns.

7) Results Normalized to -O0: Rather than normalizing all
run time results from all target programs to a scale of [0..1],
the -O0 run time is set to be the value 1.0, with shorter run
times giving numbers above 1.0, e.g., twice as fast is 2.0. These
numbers are used for the other statistics and results reported
here. To aid in comparison to prior work a -O3 run time is
also computed.

8) Second-Order Training: A large number of experiments
were performed on each target program, and every compila-
tion attempt and the resulting run time was recorded. From
this data, statistical correlations were calculated and used to
generate a database of heuristics that could be used to generate
intra-episode rewards in new experiments. This is a pure
RL approach, compared with the blended (unsupervised and
reinforcement learning) method seen in [8] (their Section 6.2
and Fig.9). Details are in the project repository [35].

C. Specifics of Procedure

1) Choice of Subject Programs: Twelve programs were
used as subjects of the compilation-training task. Nine of
these are the same as in earlier works [8], [9] allowing for
verification of previous results and comparison to the current
work. Three more were added to provide better coverage of
computationally intensive work in the spirit of [28] 2. All
12 programs represent emerging tasks that require custom
hardware or heterogeneous solutions. Several of the programs
perform tasks that are now implemented in hardware, e.g. the
encryption algorithms, MPEG, FFT, etc; but all are similar to
new tasks that continue to emerge and cannot be performed
efficiently by existing CPUs or GPUs etc., thereby encour-
aging new hardware designs. The three added programs, in
particular: sor-caad solves a partial differential equation by
the Euler method, easily done by GPU, but new structured
grid tasks continue to emerge; iterfl-caad is a chaotic
iterative calculation with unpredictable conditional branches,

2Patterson et al. [29] soon added to the Colella list, notably including tasks
and motifs already well represented in the [30] subject programs used by [8]
but also including some not practical for single-node FPGA solution.

name source author(s) description
adpcm CHStone [30] SNU-RT [31] audio codec, sequential error propagation

aes CHStone Iwata [32] encryption
blowfish CHStone Young via [33] encryption

dhry LegUp [23] Weicker [34] integer CPU instruction mix
fft CAAD [35] Munafo non-recursive, float, mem. r/w

gsm CHStone Degener via [36] audio codec, spectral analysis
iterfl CAAD Munafo float multiply+add, mem. reads

mmult LegUp Canis [23] three nested loops, integer
motion CHStone MPEG via [36] find inter-frame motion vectors
qsort LegUp Finley [37] quicksort
sha CHStone Hollerbach via [33] SHA-1 hash
sor CAAD Munafo Euler integration, heat equation on grid

Fig. 3: The benchmark programs

with many independent inputs that can be evaluated in parallel
and so resembles Monte Carlo; and fft-caad performs a
standard FFT in-memory; all three have modest potential for
hardware parallelization.

2) Selection Complexity Survey: In the selection problem,
there is less complexity to the problem when only a small
number of code transformations (optimization passes) can be
selected; conversely the availability of a large number of code
transformations makes the selection problem more difficult
for automated learning. Some programs will need a greater
number of transformations to achieve the best run time, but
an ML model may take a lot longer to discover a sufficient
set of code transformations and best ordering thereof.

In order to explore the range of complexity needed for the
different subject programs, all programs were used in training
experiments across a range of episode length parameter values:
7, 10, 14, 20, 30, and 45. This parameter controls the maxi-
mum number of code transformations that may be performed.
(Previously, in [9] the values 25, 45 and 100 were used, and
in [8] only 45 was used.)

These experiments all were performed using a PPO (prox-
imal policy optimization) agent. The survey of all benchmark
programs with all episode lengths is intended to reveal the best
choice of episode length for each target program, enabling
variations to be explored in a more focused manner, and
thereby enabling more variations.

After getting the results of the full survey with a PPO agent,
experiments were performed with RL agents using the DQN
and A3C methods. Further experiments were performed with
an LSTM module in the policy, an option that is provided by
RLLib for RL agents.

V. RESULTS AND DISCUSSION

A. Initial Complexity Survey

Most experiments were conducted in a way that generated
data such as seen in Fig.4. On the vertical axis, 1.0 represents
the speed of the program when compiled with no optimizations
(using -O0) into a hardware design. Higher numbers repre-
sent faster execution—for example, if the -O0 design takes
100µsec, then an optimized result of 80µsec is plotted as 1.25,
because 100/80 = 1.25.
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TABLE I: Best Episode Length by Program. Best refers to the
episode length achieving shortest run time; mean vs. -O0 and
s.dev. refer to -O0 run time divided by shortest run time

program best mean s.dev. mean Fmax

vs. -O0 vs. -O3 range
adpcm-chs 20 4.501 0.13 1.808 12-12

aes-chs 7 1.307 0.0021 1.007 12-12
blowfish-chs 7 1.298 0.0016 1.231 250-297
dhry-legup 20 24.80 0.48 0.765 12-400

fft-caad 7 2.213 0.31 2.284 12-292
gsm-chs 45 1.324 0.0074 1.101 136-136

iterfl-caad 7 1.255 0.00079 1.255 176-176
mmult-legup 45 2.803 1.3 2.214 297-310
motion-chs 45 1.257 0.0076 0.991 250-250
qsort-legup 10 1.176 0.036 1.047 297-297

sha-chs 20 33.87 2.8 0.853 12-400
sor-caad 10 1.172 0.0012 0.998 250-310

geom. mean(9) - 3.201 - 1.157 -
geom. mean(12) - 2.640 - 1.217 -

The colors show the maximum number of code transfor-
mations (episode length): red, orange, yellow, etc. for 45, 30,
20, 14, 10, or 7. For some programs it is easy to see one or
two best choices of this parameter, but for most the choices
depend on what type of result is desired, such as higher mean

or lesser standard deviation.

More “noise” (higher standard deviation of the run time
measurements) is common for the experiments using a higher
episode length; this probably results from the far greater pos-
sible variation in compiled results from using more code trans-
formations. We also observe the highest speeds, presumably
because some programs require a large number of different
transformations to optimize completely. In most experiments
the very best run times are intermixed with many relatively
poorer run times, and the agent fails to learn to exclude the
latter.

Table I summarizes the data by showing, for each program,
which episode length resulted in the lowest mean run time after
training the RL agent. For example, in the first row adpcm-chs
was able to run an average of 4.5× faster as compared to -O0,
when the episode length (and therefore, the number of code
transformations in the compilation) was 20. The s.dev. column
shows a standard deviation of 0.13 for the data points from
that program and episode length. For the mean and standard
deviation, the final 20 samples were used, or all samples
from the final 5% of training “time” when available (which
primarily happened when the cached results hit rate was high,
producing more data points per normalized “time”). The final
two rows give geometric means for the 9 programs in [8] and



for all 12 respectively.

B. Fmax Results

Table I gives minimum and maximum Fmax values for
each program. Some give the same Fmax for all compilation
attempts; others vary as much as 33×. While all programs use
arrays, declaration scope varies; some programs pass pointers
to functions that modify array contents, presenting an aliasing
hazard. Not all programs perform memory writes. Some have
easily inlined leaf functions, allowing pointer parameters to
become local variable-indexed array references. Some perform
as many as eight reads per innermost loop iteration from
different addresses. All of these variations can interact with
the choice of compiler optimizations and algorithms used in
the HDL back end to decide whether arrays are in static RAM
and how to arbitrate multiple accesses. The raw cycle counts
are partly based on critical path timing of basic blocks, which
are lengthened when needed to accommodate possible memory
controller delays.

As it is used as a baseline by prior work, -O3 is shown
for reference (column 5 of the table). It can be seen for
which programs the CPU-specific optimization ordering of
-O3 happens to function well when generating a custom
synthesized hardware design; these are the programs for which
column 5 has low values. In some cases -O3 falls far short of
what is possible, and there are two programs (fft-caad and
iterfl-caad) for which -O3 fails to outperform -O0. This is
easily understood, because as stated earlier, there are many
limitations and idiosyncrasies of CPU architecture, severely
constraining what a compiler might do to improve run time,
and -O3 intentionally yields to these constraints.

It is useful to consider how the results of [8] might change
by choosing cycles/Fmax as a performance metric rather
than just cycles. We found that three of the five programs
achieving highest mean speeds (lowest run times) in relation
to -O3 did so with the benefit of an Fmax greater than 200
MHz. This frequency, cited in [8], is commonly used for
collaborative designs and in FPGA design research. Scaling
to 200 MHz would prevent these programs from getting their
best performance; and would also prevent the -O3 result from
benefiting from a higher Fmax , which may have comparatively
inflated the results presented in that work. 3

C. Variations on Agent Learning Model

The DQN and A3C experiments were performed with
programs that had presented problems as seen in Fig.4. Each
of the programs adpcm-chs, aes-chs, blowfish-chs,
dhry-legup, gsm-chs, mmult-legup, motion-chs,
qsort-legup, and sha-chs was used with one or both
agent types, repeating the choice(s) of episode lengths that
seemed most promising from the full survey.

3Using all our data, for all observed cycle counts irrespective of Fmax , the
means vs. -O3 (last two rows of Table I col. 5) rise to 1.317 and 1.405.

Unfortunately, all achieved poorer results: lower perfor-
mance estimates (longer run times) after an equal amount of
training (under the normalization described in Section IV-B4)
or achieving very nearly the same run times but with a
considerably longer training time required, and in all cases
having a greater standard deviation in the achieved run times
after training.

The experiments employing long-short-term memory
(LSTM) also failed to produce better results.

D. Second-Order Training

From detailed logs of all experiments of Section V-A, all
pairs of optimizations and associated reward values are nor-
malized and averaged to create a database of pairwise rewards
(see Fig.1). Care is taken to correct for episode lengths, and
not to count (A,B,A,B) as three instances of A..B. To
prevent the second-order training from learning to replicate
bad orderings generated in the earliest batches of the original
experiments, this process omits data from compilations that
failed to produce a program better than -O0. A PPO agent
is trained with low-magnitude rewards on each step in an
episode, determined by the pairs present in the agent’s actions
thus far in that episode, and scaled in proportion to the corre-
lated reward weights in the database. The intent is to encourage
agents to develop a mild preference for sequences containing
known good subsequences, and thereby possibly discover the
better full sequences more quickly. These experiments were
performed with adpcm-chs and qsort-legup; varying the
overall magnitude of these mini-rewards across a 60× range;
results were no better (but also no worse) than in Section V-A.

VI. CONCLUSIONS; FUTURE WORK

We conclude by underscoring and sharpening the finding of
[9] that these methods perform well for some programs, but
not for all; and recommending that machine learning be used
together with domain-specific knowledge and expert design
work, to take maximum advantage of configurable hardware
platforms for those computationally intensive tasks that can
benefit. To that end, it will be best to pursue further research
in the analysis of HLL programs to identify characteristics that
can helpfully assist an artificial model in identifying when the
best performance is possible and how to achieve it.

Furthermore, as machine learning provides a vast and con-
tinually expanding range of methods with many variations and
adjustable parameters, there is always more work of this type
to be pursued. There are other open-source HDL generation
tools, and some of these enable arbitrary optimization order-
ings; the methods presented here can be used to evaluate their
potential.
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