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Abstract—Indexing Transmission Electron Microscopy (TEM)
diffraction patterns is a critical step in materials characterization.
Despite the manually intensive indexing process, work related
to Machine Learning (ML) in its space is sparse. We present
an evaluation of current state-of-the-art classification models
and a Convolutional Neural Network (CNN), found through
a Neural Architecture Search (NAS), in the TEM diffraction
domain. Both convolution and transformer-based architectures
were considered. Our NAS model achieved the greatest top-1
accuracy of 77.03% and F1 score of 0.751. The convolution-based
architectures performed better, with EfficientNet-B3 achieving
the highest average accuracy of 71.82% and tying the NAS model
with the largest average F1 score of 0.686. These results can be
used to guide further research into the better classification and
creation of TEM diffraction data.

Index Terms—Machine Learning, TEM, SAED, AI, CNN,
GAN, Transfer Learning, Diffraction, Automation, Transformer

I. INTRODUCTION

Transmission Electron Microscopy (TEM) is a fundamental
tool in the field of materials science and engineering. High
energy electrons are used to generate patterns containing
orientation and structural information that is essential to
the development and improvement of materials [1]. This
information drives the development of stronger and lighter
materials that underlie industries that range from aerospace
and automotive to biological implants and electronics [2].

Unlike the biological fields where microscopy data
analysis has transitioned to automated processing [3]–[5], the
electron pattern identification process in materials science
is predominantly manual, taking experienced researchers
hundreds of hours to traverse, creating large backlogs of data.
With the availability of High Performance Computing (HPC),
Machine Learning (ML) models such as neural networks
offer a promising solution for automated indexing of TEM
diffraction patterns, as they have been shown to drastically
reduce the time required to perform complicated tasks as
evidenced by models like AlphaFold, which, while using a
GPU, can predict protein structures in as little as minutes
[6]. As the TEM diffraction field is relatively unexplored in
regards to the employment of ML techniques, the application
of neural networks could drastically expedite the indexing
process and accelerate the rate of materials science research.

The goal of this paper is to foray into the research direction
of high throughput automated indexing of TEM diffraction

patterns by surveying the performance (accuracy) of current
state-of-the-art ML models and drawing comparisons with a
proposed Convolutional Neural Network (CNN) architecture
discovered through a Neural Architecture Search (NAS). Four
state-of-the-art ML architectures were assessed: VGG16 [7],
ResNet-50 [8], EfficientNet-B3 [9], and ViT-L16 [10]. Each
of these models were trained using two approaches: initialized
from scratch (raw) where all layers are trained and pre-trained
where only the model head was trained. This work made use
of the High Performance Computing Resource in the Core
Facility for Advanced Research Computing at Case Western
Reserve University; specifically an AMD EPYC 7742 CPU
and two Nvidia A100 GPUs (using distributed data paral-
lelization). The results will be used to guide future research
on developing better classification models as well as their
parallelization strategies to achieve a high throughput indexing
pipeline for TEM diffraction patterns, thereby exposing a new
application domain to the power of HPC-driven Artificial
Intelligence (AI)/ML.

II. BACKGROUND

A. TEM Diffraction

Planes of atoms within a single crystal of a material
coherently diffract a TEM’s beam of high energy electrons
[11]. These single crystals are composed of unique
compositions and structures of elements. A sensor identifies
the location of transmitted electrons and generates an image
known as a Selected Area Electron Diffraction (SAED)
pattern. These SAED patterns, also known as diffraction
patterns, are key to the identification of a material and its
structure. This information is fundamental to the process of
materials characterization and discovery.

Figure 1 shows one of the 738 SAED patterns used
in this work, provided by Professor Assel Aitkaliyeva of
the University of Florida [12]. The individual spots in the
pattern correspond to atomic planes; distinct arrangements
of atoms vary the level and angle that electrons exit the
single crystal [13]. on the unique combinations of diffraction
angles and distances, researchers can identify a material’s
phase (also known as its structure). In the case of this
work, phase is the unique classifier. One will notice a
two-fold symmetry along the 8 to 2 o’clock and 11 to 5
o’clock axes, however there is no uniform grid of spots.
This pattern for a Plutonium Zirconium (Pu-Zr) alloy was
experimentally obtained from a TEM. There are irregularities



Fig. 1: An SAED pattern from a Plutonium Zirconium (Pu-Zr)
alloy, specifically the κ-PuZr2 phase. This is an actual pattern
captured by a TEM. One can see an element of symmetry
within the system; however there are noticeable irregularities
in both spot size and intensity.

between patterns that come in the form of different spot
sizes, varied levels of intensity throughout the pattern, and a
soft haze around certain dots. An experienced researcher can
analyze these patterns to identify the material and its structure.

B. Phase Indexing

SAED patterns are manually indexed by measuring the
distances and angles between neighboring spots in relation
to the highest intensity spot [14]. Physics-based algorithms
show promise, but are complex, expensive, and slow to
develop while still requiring human input and refinement
[1], [15]. The manual method is used today in conjunction
with physics-based software to help accelerate the process.
However, even the most experienced researchers index at a
rate of a few patterns per hour. A doctoral student could
dedicate years to capturing and indexing the thousands of
patterns required for their research.

ML has potential to expedite the process, though one
potential barrier is the availability of training data; many of
them are proprietary. In addition to issues with accessibility,
SAED pattern datasets also tend to be relatively small, as
evidenced by the 738 patterns available for this study. Despite
these challenges, this work aims to distinguish between nine
different phases of Pu-Zr alloys from a single SAED pattern
using four state-of-the-art models and one discovered using
NAS.

In conclusion, the problem statement of this work can be
defined as follows: given an SAED pattern as an input, an

ML model will identify the corresponding phase of the image.

The remaining portions of this paper are organized in
the following manner: Section III covers adjacent work in
automated diffraction pattern analysis, Section IV – Methods
covers the dataset and models used in this research, Section
V – Results & Discussion looks at the results observed
while conducting the study, Section VI – Future Directions
explores future avenues of research inspired by this work, and
Section VII – Conclusion concludes as to the current state of
automated indexing of TEM diffraction patterns using ML.

III. RELATED WORKS

ML research pertaining to the automated TEM indexing
domain is relatively sparse. One group trained ResNet
architectures of varying size to classify between 36 space
groups (symmetry descriptions) for simulated SAED patterns
at up 92.61% validation accuracy [16]. Another paper took a
slightly different approach, using the 2D azimuthal integration
of effective SAED patterns to feed peak positions into a 1D
CNN. They were able to narrow 230 space groups to the
top-2 with a confidence level ranging from 70% to 95% [17].

IV. METHODS

A. Data

738 diffraction patterns were provided by Professor
Aitkaliyeva [12]. Their distribution across nine different
phases of Pu-Zr alloys are shown below in Table I.

TABLE I: The populations of each image’s labelled material
phase. The data set was split 80% training and 20% testing
before rotations were applied to artificially increase the train-
ing size.

Image
Phase

Training
Population

Rotated
Training

Population

Testing
Population

α-Zr 235 5,640 61
δ-(Pu, Zr) 194 4,656 47
β-Pu 36 864 6
Zr3O-R-3c h 34 816 8
ZrO2 26 624 3
PuO2 25 600 10
PuO 19 456 4
κ-PuZr2 17 408 7
Zr3O-R32 h 4 96 2

In addition to the small number of images, the class divide
is heavily skewed with α-Zr representing 40.1% of the dataset
and Zr3O-R32 h only 0.8%. The following pre-processing
steps were performed to split the data, help alleviate the
population size, and prepare it for model input:

• An 80% training and 20% testing split was used to
proportionally divide the 738 patterns amongst each of
the nine classes, leaving 590 and 148 patterns respectively
in the training and testing datasets.



• A series of 15 degree central rotations were applied to
each image in the training set within the range of [0,
360] degrees, resulting in 14,160 patterns in the training
dataset. The test images were left untransformed.

• Each pattern was center-cropped, resulting in 800 pixel
by 800 pixel images.

• The ViT-L16 model had each image resized from 800
pixels by 800 pixels to 224 pixels by 224 pixels in order
to allow use of the pre-trained model. The raw variant
used the resized images as well.

B. Models

The VGG16, ResNet-50, EfficientNet-B3, and ViT-
L16 models were chosen as bases of comparison due to
their historic state-of-the-art capabilities on the ImageNet
classification task. VGG16, ResNet-50, and EfficientNet-B3
are all convolution-based architectures while ViT-L16 is
a vision transformer. Additionally, it should be noted that
work conducted in [16] used ResNet architectures to classify
simulated SAED patterns; [17] has not been compared due to
the inability to access their methods.

The NAS model, known as 299-AN, was discovered
through a brute-force search of a model space consisting
of 41,472 possible architectures. The search parameters are
shown in Table II, with 299-AN’s specific values bolded and
highlighted in gray.

TABLE II: The model variables that were adjusted during the
NAS of which 41,472 models were trained. Those values that
are bold and highlighted in gray were used by model 299-AN.
The dataset adjustment indicates whether or not the rotation
for increasing the dataset size was applied or not.

Adjusted Variables Possible Values
Number of Convolution Layers 1, 2, 3, 4, 5, 6
Number of Dense Layers 1, 2, 3 , 4, 5, 6
Number of Nodes in the First Dense Layer 8, 16, 32, 64
Batch Normalization True , False
2D Dropout True, False
Dropout True, False
Learning Rate 0.01, 0.001 , 0.0001
Dense Layer Architecture Constant , Encoder
Dataset Original, Rotated
Batch Size 8, 16 , 32

C. Training

Each of the models were trained ten times for 20 epochs
using a batch size of 32 patterns and the Adam optimizer
with a learning rate of 0.001. PyTorch was used both for
training and testing every model [18]. All models, except for
the NAS model (299-AN), were trained in two different ways.
The first, called raw, took freshly instantiated versions of the
model and trained them from scratch. The second, called
pre-trained, only trained a newly instantiated head for each

model; the model body used frozen weights from training on
ImageNet. 299-AN was only trained on its raw state.

V. RESULTS & DISCUSSION

Individual model performances are outlined in Table III.
All accuracies provided are top-1 while all F1 scores are
weighted due to the imbalanced class distribution shown in
Table I. The values both in bold and highlighted in gray
correspond to the highest observed metric. Model 299-AN
from the NAS is the smallest in terms of parameter count
while also providing the highest accuracy at 77.03% and an
F1 score of 0.751.

The raw variants of the other models, except for ViT-L16,
also managed to achieve similar accuracies in the 70s. The
inability of the vision transformer model to learn as well as
as the convolution-based architectures could be explained
by the fact that our version trained with a batch size of 32
patterns while its implementation study, [10], trained with a
much larger batch size of 4,096. The batch size parameter
should be further explored. However, it is unlikely that the
raw ViT-L16 model did not perform well due to the image
resizing operation as the pre-trained version classified at a
rate on par with the other raw variants.

ResNet-50’s pre-trained model was the only other model to
use transfer learning that performed moderately well with a
best accuracy of 64.19%. Our model did not match the same
accuracy observed in [16]’s ResNet-50. Their work saw a
performance of 90.339% accuracy while using a pre-trained
variant of the model and fine-tuning its parameters with
simulated SAED patterns. One potential explanation for the
difference in performance is our use of real SAED patterns
and their exclusive use of simulated data. Given the perfect
nature of simulations, the noise present in real SAED patterns
could explain the variance in model performance. The impact
of noise present in TEM indexing is worth exploring in the
future.

The EfficientNet-B3 and VGG16 pre-trained models
exhibited similar behavior to the raw ViT-L16, with 31.76%
and 43.92% accuracy respectively. These results indicate that
both EfficientNet-B3 and VGG16 architectures were unable
to apply what they learned from being pre-trained with the
ImageNet dataset as well as the others. Additionally, the
raw variants, were able to learn enough to predict the phase
at above 70% accuracy in almost all cases, except for ViT-L16.

When comparing the models’ average accuracies, the raw
VGG16 model stands out. All models experienced a drop
in reported accuracy due to averaging, however VGG16
experiences a drop of 28.58% between the best and average
accuracies. The explanation can be seen in Figure 2a: the
test accuracy violin plot shows a huge variance in model
performance. Nine out of 10 raw VGG16 models performed



TABLE III: Indicates whether or not a model was pre-trained and their respective parameter counts. Additionally, it provides
the best and average accuracies (top-1) and F1 scores from 10 unique trainings of the model. It should be noted that only the
classification layers were trained for the pre-trained models. The bolded items highlighted in gray correspond to the highest
metric values observed in this study.

Model Pre-Trained Parameter Count (Millions) Best Accuracy (%) Avg. Accuracy (%) Best F1 Score Average F1 Score
NAS (299-AN) F 0.265 77.03 71.62 0.751 0.686
EfficientNet-B3 F 10.7 75.68 71.82 0.71 0.686
EfficientNet-B3 T 10.7 31.76 28.11 0.281 0.261
VGG16 F 1,300 72.97 44.39 0.708 0.287
VGG16 T 1,300 43.92 43.04 0.285 0.274
ResNet-50 F 23.5 75.0 68.85 0.745 0.678
ResNet-50 T 23.5 64.19 61.01 0.622 0.57
ViT-L16 F 302 45.95 44.93 0.388 0.374
ViT-L16 T 302 72.97 69.8 0.676 0.633

at 41.22% testing accuracy. They only learned to predict 0,
the class label pertaining to α-Zr, which encompassed 39.83%
of the training dataset as shown in Table I. The pre-trained
VGG16 models behaved similarly, but also learned to pick
the Zr3O-R-3c h phase and, rarely, the β-Pu phase.

Raw ViT-L16 has a similarly tight distribution of model
performances, with it being able to predict both the α-Zr
and δ-(Pu, Zr) phases. With these observations, it becomes
apparent that test accuracy may not be the best metric for a
model’s ability to learn as one can approach 50% accuracy
by guessing one or two of the majority phases. The weighted
F1 score helps to solve this problem by applying weights
equal to a class’s probability within the population.

Figure 2b shows the F1 score distributions for each model.
The pre-trained EfficientNet-B3, raw and pre-trained VGG16,
and raw ViT-L16 models all exhibit a leftward shift in relation
to the other models. Although F1 score is not a direct relation
to accuracy, it does show that these models are making more
incorrect predictions than the others, penalizing gaming of
the system by choosing only a couple of classes.

The 299-AN, raw EfficientNet-B3, raw and pre-trained
ResNet-50, and pre-trained ViT-L16 models predict more
classes than the other four while also being more accurate
in regard to said classes. Each of the five higher-performing
models (in terms of F1 score) makes predictions that
encompass between five and nine classes. However, it is
uncommon for a model to make predictions inclusive of all
nine classes. The only two phases that are present amongst
all of the five best architectures were α-Zr and δ-(Pu, Zr).
Logically, this makes sense as these phases make up 72.7%
of the training dataset meaning that the model had the most
exposure to each of these classes.

These results indicate that a larger model does not always
yield a better result. 299-AN tied with raw EfficientNet-B3’s
average F1 score despite having 2.48% of the amount of
parameters as seen in Table III. However, some of the larger
models may not have been trained with optimal parameters,

meaning that they could offer better performance given
fine-tuning. These results will help create future directives to
push greater levels of performance in the indexing of SAED
patterns.

VI. FUTURE DIRECTIONS

The models covered in Section V are promising, showcasing
the ability to detect differences between diffraction patterns of
varied phase. However, they do not represent the culmination
of this work; said models serve as a baseline for future
methods considered below.

A. Physics-Informed

This work showcases models that rely solely on the capacity
of the network to extract features from a two-dimensional
image of an SAED pattern. Researchers are capable of
doing the indexing from an entirely visual standpoint,
however, they extract key angles, vector magnitudes, and
often compare these values to other patterns from the same
sample. The model currently lacks the capability to compare
its representation to other SAED patterns, and, as it stands,
one cannot say with absolute certainty what features the
model chooses to extract and focus on. There may be key
aspects of the dataset used within the manual methodology
that are not being directly input to the model.

There is no guarantee that giving the model this specific
information will help it better classify between phases, but
a similar approach has been shown to work well in regards
to material property predictions. The field often represents
molecules as graphs, embedding physical information into its
structure, and feeds them into Graph Neural Networks (GNN)
with good results [19], [20]. These models are not necessarily
capable of representing local (atomistic) interactions, which
can be important in the prediction of electrical properties,
after multiple graph convolutions. The Atomistic LIne Graph
Neural Network (ALIGNN) model added an alternative, line
graph neural networks, that incorporates bond information
in a separate graph. This provided performance better than
some of the previous GNN models in regards to atomistic



(a)

(b)

Fig. 2: Violin plots detailing the performances of 10 separately trained instances of each model architecture across two metrics.
Each white point within the violin represents one trained model. All models were trained and tested on the same datasets
outlined in Table I. (a) shows the model accuracies and (b) the weighted F1 scores. The weighted F1 score is useful for
adjusting the model performances relative to the unbalanced dataset.

prediction [21].

GNNs are one potential area of research, but the takeaway
is that the inclusion of alternative data representing physics-
based knowledge could benefit the model.

B. Data Simulation

Although physics informed neural networks can be trained
using small datasets [22], having more data is expected to
improve accuracy. As evidenced by [16], [17] in Section
III, diffraction patterns can be simulated. Figure 3 shows a
simulated diffraction pattern [12], [23]. Unlike a real SAED
pattern, as seen in Figure 1, simulated patterns have no
noise. To our knowledge, there is no work that explores
the generalizability of models trained on simulated SAED
patterns being applied to real ones. This, as well as the more

realistic simulation of SAED patterns, should be explored
in the future. Work has just begun into using Generative
Adversarial Networks (GAN) in order to simulate atomistic
[24] and nanoparticle [25] images. Applying GANs to TEM
diffraction could help solve the dataset size issue while
simultaneously driving the development of a better classifier
model, potentially helping to refine which physical properties
and concepts are required in order to solve the problem.

C. High Performance Computing

The models showcased in this research are extremely
resource intensive. Moreover, with the employment of
Physics informed models such as GNNs similar to the one
proposed in [21], we anticipate that complexity of models
will increase due to irregular graph based computations.
Moreover, as the models are fine-tuned using the vast



Fig. 3: An SAED pattern from the κ-PuZr2 phase. This is a
simulated pattern [23]. The diffraction is perfect, with no noise
present in the system.

amounts of “unindexed” data available in the research
community, these computational costs will continue to
grow. Thus, one of our future directions will be to work
on streamlining the training as well as indexing (inference)
processes through exploration of parallelization techniques
that are customized to the models developed for TEM
diffraction classification.

VII. CONCLUSION

The automated classification of SAED pattern phases is
an important issue as it serves as a major backbone for
many materials science research projects. Despite a dataset
of 738 images disproportionately distributed amongst nine
classes, CNN architectures were capable of identifying SAED
patterns at up to 77.03% accuracy, or a weighted F1 score
of 0.751. Based on this work, we can draw the conclusion
that the TEM diffraction domain is a great candidate for
neural network-based methods. Additionally, there is potential
for both further model and data development through the
integration of the physics of TEM diffraction.

All model architectures and prediction results are available
at: https://github.com/KLab-AI3/auto-saed
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