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Abstract—For many years, systems running Nvidia-based GPU
architectures have dominated the heterogeneous supercomputer
landscape. However, recently GPU chipsets manufactured by
Intel and AMD have cut into this market and can now be
found in some of the world’s fastest supercomputers. The June
2023 edition of the TOP500 list of supercomputers ranks the
Frontier supercomputer at the Oak Ridge National Laboratory
in Tennessee as the top system in the world. This system features
AMD Instinct 250X GPUs and is currently the only true exascale
computer in the world. In the near future, another exascale
system, Aurora, equipped with Intel Delta GPUs, is expected
to come online at Argonne National Laboratory in Illinois.

As the use of different GPU architectures becomes more
prevalent in today’s supercomputing centers, it is becoming
crucial to have a programming model that could support different
platforms without the need for separate codebases (Pascuzzi,
2021). The first framework that enabled support for heteroge-
neous platforms across multiple hardware vendors was OpenCL,
in 2009. Since then a number of frameworks have been developed
to support vendor-agnostic heterogeneous environments including
OpenMP, OpenCL, Kokkos, and SYCL. SYCL, which combines
the concepts of OpenCL with the flexibility of single-source C++,
is one of the more promising programming models for heteroge-
neous computing devices. One key advantage of this framework
is that it provides a higher-level programming interface that
abstracts away many of the hardware details than the other
frameworks. This makes SYCL easier to learn and to maintain
across multiple architectures and vendors.

In recent years, there has been growing interest in using
heterogeneous computing architectures to accelerate molecular
dynamics simulations. Some of the more popular molecular
dynamics simulations include Amber, NAMD, and Gromacs.
However, to the best of our knowledge, only Gromacs has been
successfully ported to SYCL to date. In this paper, we compare
the performance of GROMACS compiled using the SYCL and
CUDA frameworks for a variety of standard GROMACS bench-
marks. In addition, we compare its performance across three
different Nvidia GPU chipsets, P100, V100, and A100.

I. INTRODUCTION

Accelerators, such as GPUs, FPGAs (Field-Programmable
Gate Arrays), and ASICs (Application-Specific Integrated
Circuits), have become essential components in various do-
mains, including artificial intelligence, scientific computing,
and embedded systems. These accelerators are designed to

enhance the performance and efficiency of specific tasks
by offloading computation from general-purpose processors.
GPUs in particular have been widely used as accelerators
in many deep learning and artificial intelligence applications
due to their highly parallel architecture and ability to perform
massive computations in parallel [1]. Introduced in 2006 by
NVIDIA, CUDA has emerged as the reigning framework
for developing code specifically designed to run on GPUs.
CUDA offers a rich assortment of libraries that serve an ever-
growing number of domains and applications. It is important
to note that CUDA-enabled applications are often able to
achieve exceptional levels of performance and efficiency on
NVIDIA hardware because CUDA is specifically designed to
run on NVIDIA GPUs, which allows developers to leverage
the underlying hardware at a low level. However, this decision
also makes it impossible to port CUDA to GPUs manufactured
by other vendors. SYCL was introduced as a new cross-
platform abstraction layer to provide an efficient way for
single-source heterogeneous computing using C++ (Khronos)
in March 2014. SYCL allows developers to write one code
that can be executed on various hardware accelerators, such
as GPUs, FPGAs, and ASICs, enabling efficient utilization of
these resources [2].

II. PREVIOUS WORK

There have been a number of recent studies that attempt to
compare the performance of SYCL and CUDA, each typically
focusing on a particular application or library. Overall, these
papers suggest that SYCL provides better portability and a
higher level of abstraction than CUDA, but that CUDA may
still have an advantage in terms of performance optimiza-
tion for NVIDIA GPUs. However, the specific performance
characteristics may depend on the particular benchmark or
application being used. Below is a brief overview of some
recent comparisons found in the literature. In [3], the authors
compare the performance of SYCL and CUDA on Tesla
V100 GPUs for three different benchmark applications: Babel-
STREAM [4], which measures memory transfer rates to and
from global device memory; Mixbench [5], which evaluates



the execution limits for GPUs on mixed operational intensity
kernels; and a custom built Tiled Matrix-Multiplication ap-
plication, which benchmarked various matrix operations for
two different memory management approaches. The authors
found that both SYCL and CUDA provide similar performance
for most benchmarks, with CUDA generally providing slightly
better performance for large matrix sizes. They also observed
that many of the performance differences could be ascribed
to matrix ordering and choices of how to load memory.
Reference ref used the RAJA Performance Suite [ref] to
compare execution performance for SYCL and CUDA against
various loop-based computational kernels. This study used the
hipSYCL toolchain [3] to compile SYCL kernels directly into
CUDA code and found that in most cases the SYCL kernels to
be competitive with native CUDA kernels. The performance
of Fast Fourier Transform (FFT) libraries developed for SYCL
versus FFT libraries developed for Nvidia was studied in [6]
found the SYCL libraries typically ran ~30% slower than
their CUDA counterparts, after differences in kernel launch
overheads were taken into account. In[7], the performance
and code portability of ADEPT, a widely used bioinformatics
sequence alignment kernel, has been evaluated across various
vendor GPUs and programming models and found that the
performance portability across different GPU architectures was
rather poor and concluded that the ADEPT developers has
been tuned and optimized the program for NVIDIA GPUs.
Overall, the choice between CUDA and SYCL depends on
the specific needs of the application and the target hardware.
CUDA is a good choice for applications that require high
performance and low-level access to the GPU hardware, while
SYCL is a better choice for applications that need to be
portable across different architectures and vendors.

III. INTRODUCTION TO GROMACS

GROMACS (GROningen MAchine for Chemical Simula-
tions) [8] is a widely used software package for biomolecu-
lar simulations. It has been optimized for high-performance
computing environments and has been employed in vari-
ous studies, including simulating aptamer-peptide binding in
biosensor applications and implementing dimer metadynamics.
In recent years, there has been a significant focus on lever-
aging the computational power of graphics processing units
(GPUs) to accelerate GROMACS simulations. The integra-
tion of GPUs in GROMACS has revolutionized the field of
molecular dynamics (MD) simulations, leading to significant
improvements in terms of performance and scalability. GPU-
accelerated simulations have demonstrated speedups of up
to 10 times compared to CPU-only simulations [9]. GPU-
accelerated GROMACS simulations have been utilized to
study protein folding dynamics, protein-ligand binding, and
protein unfolding under various conditions ([10], [11], [12]).
These simulations provide valuable insights into the behavior
and function of biomolecules, aiding in drug discovery and
understanding biological processes. GROMACS has supported
GPU acceleration since version 4.5 and natively integrated
GPU support since version 4.6 [9]. The native GPU support

in GROMACS combines reformulated molecular dynamics
algorithms with a heterogeneous parallelization scheme that
utilizes both multicore CPUs and GPU accelerators [9]. Ini-
tially developed using CUDA, GROMACS shifted its focus to
creating a portable multi-vendor backend, utilizing OpenCL
as a standards-based GPU API [9]. Most recently, the GRO-
MACS codebase has been updated to include support for
SYCL.

GROMACS offers a range of functionalities to accommo-
date various types of force calculations. In terms of compu-
tational expense, the three most significant classes for most
simulations are as follows:

• Non-bonded short-range forces: These forces account for
direct interactions between particles within a specified
cutoff distance. Only particles within this range are
considered to interact directly with each other.

• Particle Mesh Ewald (PME) long-range forces: To model
forces over larger distances, GROMACS employs the
PME method. This approach utilizes Fourier transforms
to perform calculations in Fourier space, significantly
reducing the computational cost compared to direct cal-
culations in real space.

• Bonded short-range forces: GROMACS also incorporates
bonded short-range forces to capture specific behaviors
of bonded particles. For example, when two covalently
bonded atoms are stretched, a harmonic potential is
applied to account for the bond’s characteristics. In sum-
mary, GROMACS provides functionality to handle non-
bonded short-range forces, PME long-range forces, and
bonded short-range forces, which collectively contribute
to accurate and efficient force calculations in simulations.
The solution in the GROMACS 2020 version is full GPU
enablement of these key computational sections.

IV. PERFORMANCE ANALYSIS

The performance of Gromacs in the CUDA and SYCL
frameworks was measured using the benchmark datasets found
in [13] and [14]. These datasets have been carefully selected by
MD experts, ensuring the availability of high-quality ground
truth data for accurate benchmarking comparisons. The GRO-
MACS version employed for these comparisons was 2023.1,
and all experiments were executed on High-Performance
Computing (HPC) systems utilizing the Apptainer/Singularity
containerization platform.

In total we compare CUDA and SYCL implementations of
Gromacs for 4 different datasets: benchMEM, and three water
datasets. The benchMEM benchmark represents a protein in a
membrane surrounded by water, consisting of approximately
82,000 atoms, and was run with 10,000 steps and a 2 fs
time step. The water benchmarks used water droplets with
3 different sizes: 5 nm, 10 nm, and 15 nm. These datasets
contained 12,165, 98,319, and 325,995 atoms, respectively.
Taken together, the various molecular structures and sizes
in these 4 benchmarks allowed for a thorough evaluation of
Gromacs performance under different simulation scenarios.
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Fig. 1. Comparison of the performance of Gromacs CUDA (left) and Gromacs
SYCL (right) for four different MD datasets run on a Nvidia Tesla A100 GPU.
Larger values on the y-axis values indicate better performance.

In Figure 1 we compare the performance of the CUDA
and SYCL versions of Gromacs on an NVIDIA GPU sys-
tem comprised of 8 A100s. The CUDA simulation showed
much better performance than the SYCL simulation for the
5NM_WATER dataset. However, in the case of the constrained
dataset benchMEM, 10 nm and 15 nm, SYCL performed
better.

In Figure 2, the performance for the benchMEM and the
three water datasets is shown as a function of the individual
stages in the simulation for CUDA and SYCL, respectively.
These figures provide a comprehensive view of the compute
time spent in the various parts of the simulation and shows how
the performance of the CUDA and SYCL simulations compare
for each part. As can be seen in the figure, a significant portion
of the simulation time is spent in the PME mesh routines which
heavily rely on FFT (Fast Fourier Transform) computations.
A possible explanation as to why SYCL outperformed CUDA
for the larger datasets in Figure 1 is due to its ability to lever-
age hardware optimizations, including the utilization of Intel
MKL library and SIMD instructions, which are specifically
designed to improve accelerated FFT calculations.However,
further studies are needed to truly understand the observed
performance improvement of SYCL over CUDA in these
larger datasets.

To assess the performance of Gromacs on different Nvidia
GPU architectures, we conducted MD simulations using fixed
numbers of cores and threads using P100, V100, and A100
GPUs. The performance results are presented in Figure 3.
As expected, the A100 GPU exhibited superior performance

Fig. 2. Comparison of the percentage of cycles spent in each routine for
Gromacs SYCL and Gromacs CUDA for four different MD datasets.

for CUDA simulations, owing to its larger number of cores
and other architectural advantages compared to the other
GPUs. When comparing the performance of CUDA and
SYCL, for the A100 GPU, SYCL outperformed CUDA specif-
ically for the constrained benchMEM, 10 nm and 15 nm
datasets.However, for the rest of the Nvidia GPUs, SYCL
performed similarly to CUDA. The performance for the
benchMEM and MD_15NM_WATER datasets is shown as a
function of the individual stages in the simulation for CUDA
and SYCL in Figures 4 and 5, respectively.

V. CONCLUSION

The comparative performance analysis of SYCL and CUDA
on Gromacs for different NVIDIA GPUs (V100, P100, and
A100) using various water and protein datasets reveals that
SYCL demonstrates competitive performance when compared
to CUDA. The results of this study fall in line with previous
comparisons of the two frameworks. In addition, this study
suggests that SYCL can be a viable alternative to CUDA
for molecular dynamics simulations using Gromacs, providing
users with additional programming flexibility. SYCL’s poten-
tial to improve cross-platform portability without compromis-
ing performance indicates it can be used to provide pathways
for leveraging future advancements in computer architectures.

Future work could involve expanding the performance anal-
ysis to include other GPUs and datasets, as well as exploring
the scalability of SYCL and CUDA for larger simulations.
Such investigations would contribute to a deeper understanding
of the capabilities and limitations of SYCL and CUDA for
molecular dynamics simulations and guide researchers in
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Fig. 3. Comparative performance analysis of Gromacs using SYCL and
CUDA on P100,V100 and A100 for the benchMEM (left) and 15 nm water
(right) datasets. Larger values on the y-axis values indicate better performance.

Fig. 4. Comparison of the percentage of cycles spent in each routine for
Gromacs with CUDA using benchMEM (top) and 15 nm water (bottom)
datasets on Tesla P100, V100 and A100.

Fig. 5. Comparison of the percentage of cycles spent in each routine for
Gromacs with SYCL for the benchMEM (top) and 15 nm water dataset
(bottom) on Tesla P100, V100 and A100.

selecting the most efficient and effective framework for their
specific requirements.
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