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Abstract—In this study, we present a novel dataset for training
machine learning models translating between OpenMP Fortran
and C++ code. To ensure reliability and applicability, the dataset
is created from a range of representative open-source OpenMP
benchmarks. It is also refined using a meticulous code similarity
test. The effectiveness of our dataset is assessed using both quanti-
tative (CodeBLEU) and qualitative (human evaluation) methods.
We showcase how this dataset significantly elevates the transla-
tion competencies of large language models (LLMs). Specifically,
models without prior coding knowledge experienced a boost of
× 5.1 in their CodeBLEU scores, while models with some coding
familiarity saw an impressive × 9.9-fold increase. The best fine-
tuned model using our dataset outperforms GPT-4. It is also
reaching human-level accuracy. This work underscores the im-
mense potential of our dataset in propelling advancements in the
domain of code translation for high-performance computing. The
dataset is accessible at https://github.com/bin123apple/Fortran-
CPP-HPC-code-translation-dataset.

Index Terms—Large Language Model, Code Translation,
OpenMP, Fortran, C++

I. INTRODUCTION

The landscape of High-Performance Computing (HPC) has

long been dominated by languages such as Fortran and C++,

each with their unique strengths and serving different compu-

tational purposes [4]. These strengths have resulted in a rich

mix of codebases spanning across these languages. However,

the lack of efficient tools for translating between these two

prominent languages presents a considerable challenge in the

field. In response, this paper addresses the gap by introducing

a novel dataset designed explicitly for the purpose of training

and evaluating Large Language models (LLM) tasked with

translating between OpenMP Fortran and C++.

As the world of HPC increasingly turns towards machine

learning methods to optimize and enhance various computa-

tional processes, the need for effective understanding, trans-

lation, and generation of code in different languages has

never been more crucial [1], [19]. Bridging the gap between
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Fortran and C++ by understanding their syntactic and semantic

similarities and differences can contribute significantly towards

this objective [7]. This understanding necessitates the creation

of a reliable dataset for training and evaluating models capable

of understanding and translating between these two languages

- a significant stride that this paper takes.

The dataset that we introduce in this paper was created

by meticulously sourcing from a diverse range of origins,

including open-source projects, academic resources, and other

readily available code repositories. This multifaceted approach

ensures a diverse and robust dataset capable of capturing the

intricacies of both languages and their translation, thus enrich-

ing its value for both model training and evaluation. By provid-

ing a comprehensive test bed, the dataset allows for the robust

examination of the model’s performance and offers avenues

for its iterative improvement. In addition to demonstrating the

practical utility of the dataset, this paper provides an in-depth

analysis of its impact on models of varying complexity, from

those lacking any prior coding knowledge to those already

proficient in code understanding and translation. Furthermore,

the paper also incorporates the results of CodeBLEU [16]

and human evaluation scores, thereby providing a holistic

perspective on the translation proficiency of these models post-

training. Through these rigorous evaluations, the versatility of

the dataset in enhancing the code translation capabilities of

a broad range of models is underscored, positioning it as a

valuable asset in advancing the realm of HPC code translation.

This paper seeks not only to introduce this dataset but also

to lay the groundwork for future research in this promising

direction. It details the creation of the dataset, its composition,

and how it can be utilized for model training and evaluation.

In addition, we present the results of initial experiments

carried out using this dataset, demonstrating its potential to

significantly contribute to the field of HPC code translation.

Envisioning this dataset to become a cornerstone for re-

searchers and practitioners in the field, we aim to pave the way

for advancements in code translation, optimization, and cross-

language understanding, thereby making a substantial impact

on the High-Performance Computing landscape.



II. BACKGROUND AND RELATED WORK

In the realm of HPC, the conversion of legacy code to

modern programming languages poses a significant challenge,

often requiring substantial human intervention and expertise

[17]. Legacy languages such as Fortran, which retain their

foothold, particularly in the scientific computing community,

often present considerable hurdles when interfaced with con-

temporary HPC systems [18]. The challenges stretch from

issues of modern hardware utilization and integration with

emerging software stacks to the absence of user-friendly

interfaces and contemporary development tools.

Simultaneously, C++ has carved its niche as a leading

programming language in HPC, owing to its powerful perfor-

mance capabilities and object-oriented design. These features

facilitate effective code organization and reuse, providing

substantial advantages over legacy languages. However, the

task of manually translating Fortran into C++ is a formidable,

error-prone endeavor, even for seasoned programmers.

With the rise of large language models (LLMs), particularly

transformer-based models such as GPT, the field of natural

language processing has seen unprecedented advancements,

offering successful solutions to complex tasks such as machine

translation [8]. While the application of these models has

primarily been in the context of human languages, their

potential for extending to programming language translation

is an enticing prospect.

A significant obstacle in this context, however, lies in the

scarcity of high-quality, large-scale datasets that are suitable

for training these predictive models on the task of code

translation [14]. Existing works have largely been confined

to translations between programming languages in sequential

programming paradigms [9]. A clear gap exists for compre-

hensive datasets that focus on high-performance computing

languages such as OpenMP Fortran and C++.

This paper takes a significant stride toward bridging this

gap. It introduces the creation of a novel dataset specifically

designed for translating OpenMP Fortran code to equivalent

C++ code, with the ultimate goal of catalyzing the automation

of HPC legacy code translation and modernization.

III. DATASET CREATION

A. Data Collection

The sources for our dataset predominantly come from three

distinct repositories: the NAS Parallel Benchmarks (NPB)

[2], the Polyhedral Benchmark (PolyBench) [3], and the

DataRaceBench (DRB) benchmark [11]. We have collected

pairs of OpenMP Fortran vs. C++ code from these codebases,

combined with manual translation as needed.

The NPB dataset, a suite designed by the NASA Advanced

Supercomputing (NAS) Division, is used to evaluate the

performance of parallel supercomputers [2]. The benchmarks,

originally authored in Fortran, stem from computational fluid

dynamics (CFD) applications and consist of five ‘kernel’

benchmarks along with three ‘pseudo-applications.’ Tasks

within these benchmarks range from cubic grid assignment

and successive over-relaxation to one-dimensional integration.

The ‘pseudo-applications’ are simplified iterations of real-

world computational fluid dynamics applications. Given its

wide acceptance as a standard for performance comparison

of parallel computers within the high-performance computing

community, the NPB is an invaluable source of Fortran HPC

code for our dataset. There are also C++ versions [6] derived

from the official Fortran version. We paired them up at

subroutine/function levels to create our new dataset.

PolyBench, short for Polyhedral Benchmark, is a compi-

lation of programs used for extracting precise Static Control

Parts (SCoPs) - elements critical to the execution of HPC and

many-core architectures [3]. Extensively utilized in research

revolving around polyhedral compilation and other related

areas, the PolyBench suite comprises benchmarks from various

computing domains, including 2D and 3D convolution, data

mining, linear algebra kernels, and more. Given their compact

nature, these programs are ideally suited for compiler and

architecture experiments. Initially available in C, the suite

now also contains versions in CUDA, OpenCL, and Fortran,

making it an invaluable addition to our dataset.

DataRaceBench (DRB) is a suite of OpenMP programs

specifically designed for evaluating the quality of data race

detection tools [11]. It comprises a variety of OpenMP ap-

plications and kernels representing common computational

patterns in scientific computing. Each benchmark within the

suite is intentionally constructed either to contain or to be

free of data races for testing purposes. Given its emphasis

on parallelism and data interactions, the DRB serves as an

excellent source of comprehensive OpenMP code patterns for

our dataset. DRB also has both Fortran and equivalent C++

versions of its included OpenMP codes. This simplifies the

creation of our new dataset.

B. Formatting

The process of formatting our dataset played an instrumental

role in the eventual success of our model training. We aimed to

ensure consistency and standardization across the Fortran and

C++ code snippets, to facilitate the identification of patterns

and translation rules by the predictive model.

• Code Standardization: All the gathered OpenMP For-

tran and C++ code snippets underwent standardization

using various code formatting tools. These tools automat-

ically formatted the code to adhere to the most prevalent

style guidelines in both languages. This process involved

adjustments of indentations, line breaks, and modifica-

tions to variable naming and function declarations.

• Comment Removal: We stripped all the comments from

the code snippets. Despite the integral role comments

play in programming, facilitating code comprehension

and functionality understanding, they can introduce noise

when training a model for code translation. Thus, we

decided to exclude them from our dataset.

• Whitespace and Special Characters: We removed all

leading and trailing whitespaces from each line and

replaced tabs with spaces to maintain consistency. We



also removed special characters that were not part of the

syntax but user comments, such as non-ASCII characters.

• Function Mapping: The translation between Fortran and

C++ poses a notable challenge due to the differences in

function names and calling conventions between the two

languages [5]. To address this issue, we created a map-

ping of Fortran subroutines to their corresponding C++

equivalents. This mapping was utilized to create Fotrain-

C++ code pairs in our dataset. Additionally, we adopted

code inlining or outlining [12] techniques as needed to

match more code pairs since different implementations

of the same benchmark may not have subroutines or

functions at the same granularity. For example, A Fortran

version of a benchmark may have a big subroutine while

its corresponding C++ version has a simpler function

calling another function. In this case, we can inline

the callee function of the C++ version to match better

with the single Fortran subroutine. Function mapping

with code outlining or inlining significantly improves the

quality of our Fortran-C++ code pairs.

C. Dataset Calibration

An essential aspect of our dataset creation was its calibra-

tion, which we accomplished using a similarity test to ensure

the dataset’s accuracy and dependability.

To gain a comprehensive understanding of the dataset’s

structure and consistency, we embarked on a dataset calibra-

tion process. Utilizing StarCoder [10], we generated embed-

dings for each Fortran-C++ pair in our dataset, followed by

the computation of the cosine similarity scores for these em-

beddings. This procedure provided a quantitative measure of

the semantic similarity between each code pair and facilitated

the identification of any outliers or anomalous data points that

could potentially compromise the model’s learning.

This calibration process granted us a more profound com-

prehension of our dataset, thereby enhancing its reliability

and bolstering the credibility of our subsequent analyses. We

will delve into the details of the similarity test experiment in

Subsection IV-B.

D. Human-level Evaluation and Test

We conducted a human-level test as a part of our dataset

validation procedure to ensure its quality and practicality. This

test involved expert programmers, proficient in both OpenMP

Fortran and C++, conducting a manual review of a subset of

the data pairs in our dataset.

These experts assessed the translations based on their cor-

rectness, readability, and how accurately they retained the

semantics of the original Fortran code. They also exam-

ined potential issues that could impact the machine learning

model’s training, such as formatting inconsistencies, incorrect

translations, or any anomalies that automated tests could not

detect. The invaluable feedback garnered from this human-

level testing phase significantly aided in further refining and

enhancing our dataset’s quality. This iterative feedback and

refinement process guaranteed the creation of a high-quality,

trustworthy dataset for our code translation task between

OpenMP Fortran and C++.

Furthermore, we selected a random assortment of code

snippets from our test set and enlisted coding professionals to

translate them. We then collected and evaluated the translations

provided by these experts. This approach not only served as

a benchmark for assessing the performance of models fine-

tuned on our dataset but also gave us a more comprehensive

understanding of our dataset’s complexity. We discuss the

detailed results in Subsection IV-F.

IV. EXPERIMENT

With our established dataset of paired OpenMP Fortran and

C++ code snippets in place, we progressed to utilize this

dataset to train and/or evaluate large language models.

Our ultimate goal was to effectively execute the translation

between OpenMP Fortran and C++ code. We aimed to show-

case the potential of machine learning, particularly large-scale

transformer models, in addressing the complex task of code

translation in the high-performance computing domain.

We highlight the steps taken, the methodologies employed,

and the results obtained in the subsequent subsections. This in-

cludes the model selection, model training, evaluation metrics,

and experimental results along with detailed analysis.

A. Experiment setup

• Model and Hyperparameters: For the LLM without

prior Fortran knowledge, we used models from the Open

Pre-trained Transformers (OPT) [20] series for this task,

which are well-known for their effectiveness in various

language translation tasks. The OPT model is built on

the transformer architecture, characterized by its use of

self-attention mechanisms. The OPT model we’ve chosen

utilizes a decoder-only architecture. It consists of several

layers of self-attention and feed-forward neural networks.

Instead of using an encoder to interpret the input code

written in one language, this model directly takes the code

as part of its input sequence. Utilizing the continuous

representations of the input and the previously generated

code, the decoder then predicts the next token for the

translated code in the target programming language.

For the LLM with prior Fortran knowledge, we used

the StarCoder [10] model for analyzing a model with

prior Fortran code knowledge. StarCoder, specifically

designed to interpret and generate code, can process

source code as input and produce an embedding that

encapsulates the semantic meaning of the code. StarCoder

is a model equipped with 15.5 billion parameters and

features a decoder-only transformer structure. It’s trained

on permissively licensed code from Github, covering 80+

programming languages including both Fortran and C++.

The fine-tuning was conducted on an RTX6000 GPU,

utilizing PyTorch [13] version 2.01, DeepSpeed [15]

0.9.5, CUDA driver 12.1, and Cudatoolkit 11.7. The

learning rate was set to 9.65e-6, the maximum sequence

length was 256, and we utilized the Adam optimizer.



Beyond the models already discussed, we subjected GPT-

4, the most advanced commercial large language model

currently available, to evaluation on our dataset. We scru-

tinized the performance of GPT-4 on our test set, aiming

to juxtapose its capabilities with those of other open-

source models that were fine-tuned using our dataset.

• Evaluation Metrics: To gauge our model’s performance,

we employed a distinctive metric named Code Bilingual

Evaluation Understudy (CodeBLEU) [16]. Specifically

designed to evaluate the quality of code translation

models, CodeBLEU is aptly suited for our endeavor of

translating between Fortran and C++ codes. It augments

the traditional BLEU (Bilingual Evaluation Understudy)

score, predominantly utilized in natural language ma-

chine translation, by incorporating various code-centric

features, encapsulating both syntactic and semantic ele-

ments.

We leveraged CodeBLEU to scrutinize our model’s trans-

lations, juxtaposing them with the benchmark OpenMP

Fortran and C++ codes. The resultant CodeBLEU scores

furnished a quantifiable metric, granting profound in-

sights into the efficacy of our model’s translations.

CodeBLEU scores span between 0 and 1. A score of 1

epitomizes a flawless semantic match between languages.

A score of 0 indicates an absolute lack of semantic

coherence between the translated and the reference code.

• Dataset Example: Each data pair is presented in a

subroutine-vs-function format. One of the data pair ex-

amples is shown in Figure1.

C++ example: #include <omp.h>\n#include <stdio.h>\n\n\nint main(){\n 
int x = 2;\n\n #pragma omp task shared(x) mergeable\n {\n x++;\n }\n 
#pragma omp taskwait\n\n printf("%d\n",x);\n return 0;\n}\n

Fortran example: program DRB130_mergeable_taskwait_orig_no\n use omp_lib\n 
implicit none\n\n integer :: x\n x = 2\n\n !$omp task shared(x) 
mergeable\n x = x+1\n !$omp end task\n\n print 100, x\n 100 format ('x 
=',3i8)\nend program

Fig. 1. One example data pair from our Fortran-C++ code pair dataset

B. Dataset Calibration

We employed a similarity test to assess the quality of

our dataset. The code similarity task is designed to measure

the syntactic and/or semantic similarity between pairs of

code snippets. Such an analysis is advantageous in numerous

applications, including but not limited to, plagiarism detection,

code reuse and refactoring, bug detection and repair, licensing

compliance, and malware detection.

For each pair of code snippets within the Fortran-C++ code

pair dataset, we compute a similarity score by calculating the

cosine similarity of Starcoder Embedding. We utilized the sim-

ilarity determined by Starcoder, an LLM trained with various

programming languages (CPP and Fortran are included). Even

with the out-of-box model, we observed the ability of the

code to distinguish code snippets. Additionally, we manually

reviewed the code during the calibration process to reassess its

validity. A similarity score 1 indicates that the pair of snippets

share the same functionality. Conversely, if the snippets do not

share any functionality, they are assigned a score of 0. The

results of this test are presented in Figure 2.

Fig. 2. Similarity test results.

We retained all data points that displayed high similarity

(represented in blue) and re-evaluated and adjusted those that

showcased lower similarity (indicated in green and red). Some

of the red data points were discarded.

Following these adjustments, we carried out the similarity

test once more to ensure that all data pairs preserved a high

degree of similarity.

C. Performance on LLMs Without Prior Fortran Knowledge

In this part of the study, we evaluated large language models

that had not undergone prior training on any Fortran code. This

setup provided us the opportunity to examine how effectively

these models can grasp and translate Fortran code, having only

been trained on our dataset.

For this, we chose the OPT-1.3B [20], OPT-2.7B [20],

and OPT-6.7B [20] Language Models, and trained them on

our OpenMP Fortran-C++ code pair dataset. Post-training,

we tested these models on a separate set of unseen C++

code snippets. The translations produced by the models were

contrasted with the corresponding ground-truth Fortran code,

and their performance was assessed using the CodeBLEU

score.

One of the output result examples is shown in Figure 3.

As can be seen, prior to fine-tuning our dataset, the OPT

model entirely lacks the capacity to translate Fortran code,

as illustrated in the second box from the top. However,

after undergoing fine-tuning with our dataset, its capability

to translate Fortran code has seen a marked improvement, as

demonstrated in the third box from the top.

The CodeBLEU scores for the OpenMP C++ to Fortran

code translation, performed by three variants of the OPT model

before and after being fine-tuned on our dataset, are outlined

in Table I.

When examining the OPT-1.3B, OPT-2.7B, and OPT-6.7B

models prior to fine-tuning our dataset, the CodeBLEU scores,



C++ Source Code: #include <omp.h>\n#include <stdio.h>\n#include 
<unistd.h>\n\nint main(int argc, char* argv[])\n{\n  int var = 0;\n  int 
i;\n\n  #pragma omp parallel sections\n  {\n    for (i = 0; i < 10; i++) 
{\n      #pragma omp task shared(var)\n      {\n        var++;\n      
}\n    }\n  }\n\n  if (var!=10) printf("%d\n",var);\n  return 0;\n}\n

Translated Fortran Code before Fine-tune: I have a problem with the code. I 
have a C++ program that uses the C++ STL. I have a Fortran program that 
uses the C++ STL. I want to translate the C++ code to Fortran. I have a 
problem with the code. I have a C++ program that uses the C++ STL. I 
have a Fortran program that uses the C++ STL

Fortran GroundTruth: program DRB123_taskundeferred_orig_yes\n    use 
omp_lib\n    implicit none\n\n    integer :: var, i\n    var = 0\n\n    
!$omp parallel sections\n    do i = 1, 10\n        !$omp task 
shared(var) \n        var = var+1;\n        !$omp end task\n    end do\n    
!$omp end parallel sections\n\n    print 100, var\n    100 format ('var 
=', 3i8)\nend program

Translated Fortran Code After Fine-tune: program DRB073_taskshared_orig_no\n    
use omp_lib\n    implicit none\n\n    integer :: var, i\n    var = 0\n\n   
!$omp parallel sections\n    do i = 1, 10\n

Fig. 3. One example answer from the original OPT-6.7B and trained OPT-
6.7B model by using our Fortran-C++ code pair dataset.

derived from comparing their translated code with the ground

truth, incrementally rise with the model’s size, yet remain

at a relatively modest level. After fine-tuning our dataset,

the CodeBLEU scores observed a significant increase and

continued to ascend proportionally to the model’s size. Based

on CodeBLEU score metrics, our dataset can enhance the

Fortran code translation competency of models that lack any

prior coding knowledge by a significant factor of ×5.1 on

average.

D. Performance on LLMs With Prior Fortran Knowledge

We then performed experiments involving a large language

model that had already been trained on Fortran code. The aim

was to understand if exposure to our dataset could enhance

the translation capabilities of models that already had Fortran

knowledge.

We selected a model called StarCoder [10] that had prior

training on Fortran code. This model was then further trained

on our Fortran-C++ code pair dataset. We evaluated the perfor-

mance of this model on our test dataset. Then, we fine-tuned

the model on our training dataset and used the CodeBLEU

score as our primary evaluation metric.

In both experiments, we paid careful attention to the differ-

ent aspects captured by the CodeBLEU score, including struc-

tural similarity, semantic and syntactic similarity, and naming

consistency. This approach provided us with a comprehensive

understanding of the models’ translation capabilities and their

ability to learn and adapt from the training on our dataset. One

output result example is shown in Figure 4.

From this illustration, it is apparent that even for mod-

els already equipped with a substantial amount of coding

knowledge, such as StarCoder, their proficiency in translating

Fortran code remains relatively low. They are only capable

of producing fragmented translations (as shown in the second

box from the top). However, after fine-tuning on our dataset,

their translation performance has seen a marked improvement

(as demonstrated in the third box from the top).

C++ Source Code: #include <omp.h>\n#include <stdio.h>\n\n#define N 
100\n\nint var = 0;\n\nint main(){\n\n  #pragma omp target 
map(tofrom:var) device(0)\n  #pragma omp teams distribute parallel for\n  
for(int i=0; i<N; i++){\n    #pragma omp atomic\n    var++;\n\n    
#pragma omp atomic\n    var -= 2;\n  }\n\n  printf("%d\n",var);\n  
return 0;\n}\n

Translated Fortran Code before Fine-tune: COMMAND ----------\n\n# MAGIC %md\n# 
MAGIC ## 2.2.2. OpenMP Target Offloading\n# MAGIC \n# MAGIC The OpenMP 
target offloading model is a new programming model that allows the 
programmer to explicitly offload computation to a device. The programmer 
specifies the device to which the computation is offloaded using the 
`target` clause. The `target` clause can be used with the following 
directives:\n# MAGIC \n# MAGIC * `target data`\n# MAGIC * `target enter 
data`\n# MAGIC * `target exit datan\ndisplayHTML('

Fortran GroundTruth: program DRB147_critical1_orig_gpu_no\n    use 
omp_lib\n    implicit none\n\n    integer :: var, i\n    var = 0\n\n    
!$omp target map(tofrom:var) device(0)\n    !$omp teams distribute 
parallel do\n        do i = 0, 100\n            !$omp atomic\n            
var = var+1\n            !$omp atomic\n            var = var-2\n        
end do\n    !$omp end teams distribute parallel do\n    !$omp end 
target\n\n    print*, var\nend program

Translated Fortran Code After Fine-tune: program 
DRB157_atomiccritical_orig_gpu_yes\n    use omp_lib\n    implicit 
none\n\n    integer :: var, i\n    var = 0\n\n   !$omp target 
map(tofrom:var) device(0)\n   !$omp teams distribute parallel do\n    do 
i = 1, 100\n       !$omp atomic\n        var = var+1\n       !$omp end 
atomic\n\n       !$omp atomic\n        var = var-2\n       !$omp end 
atomic\n    end do\n   !$omp end teams distribute parallel do\n   !$omp 
end target\n\n    print 100, var\n    100 format ("var =",i3)\nend 
program

Fig. 4. One example answer from original StarCoder and trained StarCoder
model by using our Fortran-C++ code pair dataset.

The CodeBLEU scores for StarCoder are shown in Table

I. We can observe that for models that possess prior coding

knowledge, after fine-tuning on our dataset, the CodeBLEU

scores obtained by comparing their translated code with the

Groundtruth show a significant increase. Moreover, after fine-

tuning, their Fortran code translation proficiency surpasses

that of models without any prior coding knowledge, even

though the Fortran translation proficiency of the two types

of models was roughly equivalent before fine-tuning. In con-

clusion, based on the CodeBLEU score metrics, our dataset

can significantly amplify the Fortran code translation profi-

ciency of models with prior coding knowledge by a factor of

×9.9. Alongside this, we introduced an evaluation using the

advanced language model, GPT-4, which yielded a comparable

score of 0.56. The StarCoder model was able to exceed the

performance level of GPT-4 once it was fine-tuned using our

meticulously curated dataset. Thereby demonstrating the value

and effectiveness of our dataset.

TABLE I
CODEBLEU SCORE ANALYSIS OF LANGUAGE MODELS FOR

FORTRAN-C++ TRANSLATION

OPT-1.3B OPT-2.7B OPT-6.7B StarCoder GPT-4

Original 0.0328 0.0513 0.0720 0.0619 0.560

Trained 0.221 0.248 0.254 0.613 N/A

Ratio × 6.73 × 4.83 × 3.53 × 9.90 N/A

E. Evaluation of Models by Human

In addition to the evaluation using the CodeBLEU metric,

we also performed a human evaluation to assess the quality of

the translations produced by our model. A panel of expert



programmers proficient in both OpenMP Fortran and C++

were recruited to review a random sample of the translated

code snippets.

Each reviewer was tasked with assessing the translations,

considering the correctness, readability, and functionality.

These scores were then averaged to produce a final rating

for each translated code snippet. Each expert independently

evaluated 25% of the generated code, scoring it from 0 to

5 shown in Table II. The assessment results were essentially

consistent with those obtained using the CodeBLEU score.

After training on our dataset, the model’s ability to translate

between OpenMP Fortran and C++ code significantly im-

proved. Notably, for models that already have a certain level

of code knowledge, such as StarCoder, the improvement in

their code translation capabilities was even more prominent.

In the human evaluation, the fine-tuned StarCoder model

achieved scores that were almost on par with those of GPT-

4, further illustrating the substantial efficacy of our dataset-

specific fine-tuning.

TABLE II
ASSESSMENT OF LANGUAGE MODELS FOR FORTRAN-C++

TRANSLATION: EXPERT EVALUATION SCORES RANGING FROM 0 TO 5.

OPT-1.3B OPT-2.7B OPT-6.7B StarCoder GPT-4

Original 0.17 0.10 0.27 0.30 4.72

Trained 2.13 2.23 2.23 4.77 N/A

Ratio × 12.5 × 22.3 × 8.26 × 15.9 N/A

F. Evaluation of Humans as Players

Due to the diverse methods of code translation, the final

translation result might not necessarily match the ground

truth 100%. Thus, it was necessary to establish a human-

level benchmark CodeBLEU score. This benchmark serves

to represent the level at which a model’s CodeBLEU score,

derived from its code translation, aligns with that of a manual

translation for this specific task. Therefore, we engaged a

panel of coding experts to select and translate a diverse range

of codes from our test set. The translated codes were then

compared against the Groundtruth values using the CodeBLEU

score metric. This process enabled us to assess a benchmark to

gauge the performance of the fine-tuned models. One example

of this experiment is shown in Figure 5.

In this illustration, we have included the following compo-

nents: the original C++ code and the code translation results

of manual code translation. In this experiment, we compared

the results of manual code translation with the ground truth to

obtain a benchmark score using CodeBLEU. The final results

are shown in Table III.

TABLE III
CODEBLEU SCORES EVALUATION OF CODE GENERATED BY HUMAN

EXPERTS

Score

Evaluation #1 0.556

Evaluation #2 0.657

Evaluation #3 0.558

C++ Source Code: #include <stdio.h>\nvoid foo()\n{\n  static int q; \n  
q += 1;\n}\n\nint main()\n{ \n  #pragma omp parallel \n  {\n     
foo();\n  }\n  return 0;   \n}\n\n

Translated Fortran Code before Fine-tune: ')\n        
self.assertEqual(self.translator.translate(), '#include <omp.h>\nuse 
omp_lib\n\nprogram foo\n  integer :: q\n  q = 0\n !$omp parallel\n !$omp 
do\n  do q = 1, 1000000000\n  end do\n !$omp end do\n !$omp end 
parallel\nend program foo\n')\n\n    def test_omp_for_loop(self):\n        
self.translator.set_source_text('#pragma omp parallel for\nfor (int i = 
0; i < 1000000000; i++)\n{\n  printf("Hello World");\n}\n\n')\n        
self.assertEqual(self.translator.translate(), '#include <omp.h>\nuse 
omp_lib\n\nprogram foo\n  integer :: i\n !$omp parallel do\n  do i = 1, 
1000000000\n    print *, "Hello World"\n  end do\n !$omp end parallel 
do\nend program foo\n')\n\n    def 
test_omp_for_loop_with_private(self):\n        
self.translator.set_source_text('#pragma omp parallel for 
private(i)\nfor (int i = 0; i < 100000000

Fortran GroundTruth: program DRB082_declared_in_func_orig_yes\n    use 
omp_lib\n    use global_foo\n    implicit none\n\n    !$omp parallel\n    
call foo()\n    !$omp end parallel\nend program

Translated Fortran Code After Fine-tune: program DRB077_static_orig_yes\n    
use omp_lib\n    implicit none\n\n   !$omp parallel\n    call foo()\n   
!$omp end parallel\ncontains\n    subroutine foo()\n        static 
integer :: q\n        q = q+1\n    end subroutine foo\nend program

Human Answer: subroutine foo\ninteger, save :: q\nq = q+ 1\nend 
subroutine\n\nPROGRAM main\nUSE OMP_LIB\n!$omp parallel\ncall foo\n!$omp 
end parallel\n\nend program

Fig. 5. One example answer of the human evaluation experiment.

Following a comprehensive series of three manual eval-

uations conducted by seasoned experts in both Fortran and

C++ languages, the average CodeBLEU score achieved was

recorded at 0.657. More impressively, the CodeBLEU perfor-

mance (0.613 as shown in Table I) of the StarCoder model,

post-fine-tuning, was found to be on par with the evaluation

results produced by our human experts.

This promising outcome provides substantial evidence un-

derscoring the effectiveness of our uniquely designed dataset.

It clearly illustrates the capability of our dataset to serve as a

powerful tool in enhancing the translation proficiency between

Fortran and C++ within the realm of High-Performance Com-

puting (HPC).

V. CONCLUSION

To conclude, we have developed a unique dataset tailored

for translating between OpenMP Fortran and C++ in the high-

performance computing domain. This dataset significantly am-

plifies the translation capacities of language models, exhibiting

an enhancement factor of ×5.1 in their CodeBLEU scores on

average for models without prior coding knowledge and ×9.9

for models with some coding familiarity. The best fine-tuned

model using our dataset outperforms GPT-4. It is also reaching

human-level accuracy.

These marked improvements underline the power of our

dataset to advance the field of Fortran and C++ HPC code

translation. Notably, our work represents a valuable asset for

ongoing research in this area, providing a rigorous foundation

for models learning code translation. Hence, it sets a promising

stage for future breakthroughs in this realm and highlights the

importance of our contribution to the community.
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