
Optimizing a Distributed Graph Data Structure for
K-Path Centrality Estimation on HPC

Lance Fletcher1,2, Trevor Steil1, Roger Pearce1,2

1Center for Applied Scientific Computing, Lawrence Livermore National Laboratory (LLNL)
2Department of Computer Science and Engineering, Texas A&M Univeristy

{fletcher28, steil1, rpearce}@llnl.gov

Abstract—K-Path centrality is based on the flow of information
in a graph along simple paths of length at most K. This
work addresses the computational cost of estimating K-path
centrality in large-scale graphs by introducing the random
neighbor traversal graph (RaNT-Graph). The distributed graph
data structure employs a combination of vertex delegation
partitioning and rejection sampling, enabling it to sample massive
amounts of random paths on large scale-free graphs. We evaluate
our approach by running experiments which demonstrate weak
scaling on R-MAT graphs and strong scaling on large real-world
graphs. The RaNT-Graph approach achieved a 56,544x speedup
over the baseline 1D partition implementation when estimating
K-path centrality on a graph with 89 million vertices and 1.9
billion edges.

Index Terms—centrality, distributed graph processing, vertex
delegation, random paths, random walks

I. INTRODUCTION

With the growing amount of data being collected and
processed, the importance of scalable algorithms becomes
more evident. Large amounts of data are often represented
as graphs, enabling insightful information to be extracted in a
variety of applications. A common objective associated with
processing graphs is the concept of centrality that assigns
a value or ranking to vertices or edges to quantify their
importance. κ-path centrality is a relatively new centrality
metric which assigns each vertex v a value based on the
sum of the probabilities a simple path of length at most κ
originating from all other vertices passes through v [1]. The
method mimics the concept of a message being propagated in
a social network, where it can only traverse along a simple
path through users (vertices) who share a connection (edge).
More important users are likely to propagate more messages.
An edge variant of κ-path centrality has also been introduced
and is based on the same idea of information flowing through
a network [11].

κ-path centrality has been utilized in an assortment of graph
problems such as community detection and link prediction [3],
[9], [10]. In [4], Blackburn et al. use κ-path centrality as a
substitute for betweenness centrality to evaluate the behavior
of cheaters in an online gaming network.

As shown in [1] and [16], a large motivation behind κ-
path centrality is its ability to identify vertices which have
high betweenness centrality. The betweenness centrality of a
vertex v is found by determining what fraction of shortest
paths between all vertex pairs does v participate in [13]. The

best exact algorithm for betweenness centrality takes O(nm)
time [6], which quickly becomes computationally infeasible
as the size of the graph increases.

In [1], Alahakoon et al. introduce a randomized approxima-
tion algorithm, RA-κpath, to estimate κ-path centrality. The
algorithm samples a number of simple paths and assigns a
vertex v a value based on the number of paths v participates in.
The approximation algorithm runs in O(κ3n2−2α lnn) time,
where n is the number of vertices in the graph and α is a
hyperparameter which adjusts the tradeoff of computation time
and accuracy. Despite being less computationally taxing than
any exact betweenness centrality algorithms, RA-κpath still
requires a large amount of paths to be sampled for accurate
results on large networks. Therefore, an algorithm which can
handle both huge networks and sample a large number of paths
is necessary for κ-path applications.

In the present paper, we introduce the random neighbor
traversal graph (RaNT-Graph), a distributed graph data struc-
ture enabling the sampling of massive numbers of random
walks and paths. The data structure combines vertex dele-
gation partitioning and rejection sampling. Partitioning via
vertex delegation takes high-degree vertices or hubs and splits
their adjacency lists amongst all processors, helping balance
communication, computation, and storage [22].

Rejection sampling is a common technique used to sample
from a (often complex) distribution. To sample a random sim-
ple path, a path continually traverses to neighboring vertices
until a termination condition is met. However, since the path is
simple, the path cannot step to any previously visited vertex.
Thus, rather than calculating the set of unvisited neighbors,
employing rejection sampling to select an unvisited vertex can
greatly reduce compute time. We demonstrate the weak scaling
capability of our RaNT-Graph approach on R-MAT graphs.
Additionally, we exhibit strong scaling on real world graphs
and show up to a 56, 544× speedup over the baseline 1D
partitioned implementation.

The remainder of this paper consists of notation and defi-
nitions (Section II), our approach to distributing RA-κpath by
using RaNT-Graph (Section III), threshold and scaling experi-
ments (Section IV), related work (Section V), and concluding
remarks (Section VI).

v0

p1

p3

p0

p2

v6v7
v9

v1

v11

v2

v5

v10
v8

v4

v12

v13

v3

(a)

p1

p3

p0

p2

v6v7
v9

v1

v9v5v1

v7v3 v8v4

v11

v2

v5

v10
v8

v9v8v7v6v5v4v3v2v1adjv0:

v4

v6v2

v12

v13

v3

(b)

p1

p3

p0

p2

v3

v4

v6v7
v9

v1

v9v5v1
v6v2

v7v3 v8v4

v11

v12

v13
v2

v5

v10
v8

(c)

Fig. 1: A 1D partitioning (a) of a graph with a hub vertex v0 stored on processor p0. A vertex delegation partitioning (b) of the same graph
which shows the adjacency list adj(v0) delegated amongst all processors. The smaller adjacency list contained in each processor’s partition
represents the portion adjlocal(v0) of adj(v0) owned by each processor. In (c), the dashed orange arrows are the steps of a path taken in
a vertex delegation partitioned graph. The order of the vertices visited is v8 → v10 → v5 → v0 → v2 → v1, the order of the processors
visited is p2 → p3 → p3 → p1 → p0 → p0. When the path steps to v0, DelegatedStep (see Algorithm 3) is asynchronously executed by p1
which owns the edge from v0 to v2.

II. PRELIMINARIES

A graph G(V, E) represents relational data between ver-
tices in the vertex set V through edges (i, j) ∈ E , where
i, j ∈ V . Each vertex v ∈ V has a neighborhood
N (v) = {u | (v, u) ∈ E} which is the set of vertices adjacent
to v. The degree of a vertex v is defined as d(v) = |N (v)|.
Throughout this work we also denote a vertex’s adjacency list
as adj(v) which is an indexable equivalent to N (v). Further,
we denote the number of vertices and edges in the graph as
n = |V| and m = |E| respectively.

A simple path S, which has a source vertex s, is a path
where vertices cannot be repeated. Given a path S and vertex
v, the set of unvisited neighbors is defined as U(v) = N (v)\S .
Throughout this work we will often refer to simple paths as
paths for the sake of brevity. First introduced by Alahakoon
et al. in [1], κ-path centrality is defined as follows:

Definition 1: κ-Path Centrality – Given a graph G(V, E)
and a maximum path length κ, the κ-path centrality Cκ(v) of
each vertex v ∈ V is

Cκ(v) =
∑

s∈V\{v} Pr(Sκ,s(v))

where Pr(Ss,κ(v)) is the probability a simple path of length
at most κ originating from vertex s will traverse through v.
κ-path centrality can be applied to weighted graphs, where

an edge’s weight affects the probability it is traversed along.
Throughout this work we assume all graphs to be unweighted
and undirected. Therefore, when determining the next vertex
in a path, an unvisited neighbor of the path’s current vertex is
chosen uniformly at random.

III. APPROACH

To approximate κ-path centrality, Alahakoon et al. introduce
RA-κpath, a randomized approximation algorithm which sam-
ples 2κ2n1−2α lnn random simple paths, where α ∈ [− 1

2 ,
1
2]

is a hyperparameter which determines the number of paths
sampled thus affecting the accuracy of the approximation [1].
With probability at least 1− 1/n2, the algorithm provides an
approximation with an additive error up to ±n1/2+α. When
evaluating the algorithm’s ability to identify vertices with
high betweenness centrality, it was found that smaller values
of α produced better results [1], [16]. This comes with the
computational cost of sampling a large amount of paths T ,
where T ≫ n. For large graphs, depending on the value of
α, generating T random paths takes significant compute time
and memory.

To sample the large amount of paths required to estimate
κ-path centrality, we propose RaNT-Graph. The graph data
structure is capable of performing large amounts of random
walks or paths on massive scale-free graphs. The graph data
structure provides the ability to quickly choose an unvisited
neighbor to visit and helps balance computation amongst all
processors via vertex delegation partitioning.

A. Vertex Delegation
The imbalances of storage, compute, and communication

are problems often associated with graph algorithms due to
the non-uniform topology present in scale-free graphs. We
employ vertex delegation partitioning to mitigate these issues.
Vertex delegation distributes the adjacency lists of high-degree
vertices or hubs amongst all processors [22]. This partitioning
technique has been employed in a variety of graph algorithms
and has proven to help scaling capabilities [7], [19], [20], [24],
[28], [29].

RaNT-Graph utilizes a simplified version of vertex del-
egation partitioning which does not optimize co-located
edges as done in [22]. RaNT-Graph makes use of the
threshold dthresh to calculate the set of delegated vertices
D = {v | d(v) ≥ dthresh}. Using 1D partitioning, each undel-
egated vertex v and its adjacency list adj(v) is owned by

a processor, denoted as powner(v). With a delegated vertex
v, its original undelegated adjacency list adj(v) must be
split amongst multiple processors, where each processor p
stores a portion adjlocal(v) of adj(v). Figure 1b provides
an example of this partitioning, where v0’s adjacency list
is divided amongst all four processors. Determining which
elements of adj(v0) each processor owns is done in a round
robin fashion. With this method, given a global index iglobal
and the total number of processors |P |, the processor pdest
which owns the element and its local index ilocal can quickly
be calculated as shown in Algorithm 4. For example, in Figure
1b, iglobal = 5 corresponds to p1’s adjlocal(v0)[1] element
(using zero-based indexing). When using this round robin
method, if the same processor is always given the first element
of an adjacency list, imbalances can occur. Therefore, an offset
is applied to the round robin ordering to help balance the
number of elements each processor contains after dividing
numerous adjacency lists. We leave out the concept of an offset
in our pseudocode to simplify the algorithms.

B. Rejection Sampling

Rejection sampling is a probabilistic method used to gener-
ate samples from a target distribution by accepting or rejecting
samples based on a comparison with a proposal distribution.
It involves generating samples from the proposal distribution
and accepting those that fall within the target distribution,
while rejecting the ones that do not. The method is commonly
employed by random walk frameworks to randomly sample
neighbors where the probability distribution is based on edge
weights [21], [25], [27].

Recall, when generating a random simple path, the next
vertex must be unvisited i.e. it cannot already be in the path.
Therefore, an unvisited neighbor must be chosen uniformly
at random to be next in the path. For a given vertex v,
iteratively constructing U(v) takes O(d(v)) time. When sam-
pling massive amounts of random paths, this calculation at
each step is computationally costly. Alternatively, rejection
sampling can be applied by randomly selecting any neighbor
and accepting it if not present in the path or rejecting it
if it is. Consequently, a new neighbor is sampled until one
is accepted. The probability of selecting an unvisited vertex
follows a geometric distribution. Given a vertex v, the expected
number of neighbors sampled until an unvisited one is chosen
is

M =
d(v)

d(v)− |W(v)|
, (1)

where W(v) = N (v) \ U(v) is the set of visited neighbors of
v.

RaNT-Graph takes advantage of rejection sampling when
choosing a random neighbor of either a delegated vertex
or an undelegated vertex. To sample an unvisited neighbor
of a delegated vertex v, first an index iglobal in the range
[0, d(v)− 1] is randomly chosen. As discussed previously,
processor pdest and index ilocal can be derived from iglobal
(see Algorithm 4). Next, if pdest finds adjlocal(v)[ilocal] is
already in the path, a new neighbor of v is sampled. Otherwise,

the path is traversed to the sampled neighbor. Lines 3-6
of Algorithm 3 show this rejection sampling process in a
recursive form.

For an undelegated vertex v, there are two ways to sam-
ple an unvisited neighbor. The first is calculating U(v) and
sampling from it, and the second is rejection sampling until
an unvisited neighbor is chosen from adj(v). Deciding which
method to use is determined by a rejection sampling threshold
rthresh. If M is greater than rthresh then the neighbor is
sampled from U(v). Conversely, if M is less than or equal
to rthresh then the neighbor is rejection sampled. However,
calculating M at each step is costly due to W(v) being derived
from U(v). This negates the potential benefit of rejection
sampling. Therefore, the worst case scenario of every vertex
in the path S being a neighbor of v is assumed. Replacing
|W(v)| with |S| in Equation 1 yields the worst case rejection
sampling value MS as shown in line 3 of Algorithm 2. In
addition, to guarantee a neighbor of v is eventually chosen
from rejection sampling, d(v) must be greater than |S|. When
d(v) is less than |S|, U(v) is constructed. If U(v) = ∅, i.e.
all neighbors have been visited, then the path terminates early.
Lines 3-16 of Algorithm 2 show the pseudocode of sampling
an unvisited neighbor of an undelegated vertex.

Algorithm 1 SampleKPaths

Input: RaNT-Graph R(V, E ,D, dthresh, rthresh),
Max Path Length κ, Total Paths T

Output: Count of paths traversed over each vertex count
1: for each v ∈ V , count[v]← 0
2: parfor t← 1 to T do
3: l← path length chosen uniformly at random from [1, κ]
4: vsource ← vertex chosen uniformly at random from V
5: if vsource ∈ D then
6: pdest, ilocal ← ChooseDelegateEdge(d(vsource))
7: async execute DelegateStep(vsource, l, ∅, ilocal) on pdest
8: else
9: async execute Step(vsource, l, ∅) on powner(vsource)

10: end if
11: end for
12: return count

C. YGM

YGM is an asynchronous communication library built on
top of MPI that abstracts communication through fire-and-
forget semantics [23]. A YGM message instructs another
processor to execute some function typically using data con-
tained in the message. Messages are sent by a sender without
interacting with the receiver which lends to irregular commu-
nication patterns. Additionally, the library employs message
buffers which increase throughput by reducing the number
of individual messages sent. Messages sent using YGM can
contain data of varying type and length and are serialized
on departure and deserialized on arrival. RaNT-Graph is built
using multiple YGM distributed containers.

In the pseudocode presented throughout this paper the
syntax async execute f(x) on p refers to the YGM model
of asynchronously instructing another processor p to execute
a function f using data x.

Algorithm 2 Step
Input: Vertex v, Path Length l, Path S

1: S ← S ∪ {v}
2: if |S| < l then
3: MS ← d(v)/(d(v)− |S|)
4: if d(v) > |S| and MS < rthresh then
5: vnext ← random vertex from adj(v)
6: while vnext ∈ S do
7: vnext ← random vertex from adj(v)
8: end while
9: else

10: U(v)← N (v) \ S
11: if U(v) ̸= ∅ then
12: vnext ← random vertex from U(v)
13: else
14: for each v ∈ S, increment count[v]
15: end if
16: end if
17: if vnext ∈ D then
18: pdest, ilocal ← ChooseDelegateEdge(d(vnext))
19: async execute DelegateStep(vnext, l,S, ilocal) on pdest
20: else
21: async execute Step(vnext, l,S) on powner(vnext)
22: end if
23: else
24: for each v ∈ S, increment count[v]
25: end if

Algorithm 3 DelegateStep
Input: Vertex v, Path Length l, Path S, Local Index ilocal

1: S ← S ∪ {v}
2: if |S| < l then
3: vnext ← adjlocal(v)[ilocal]
4: if vnext ∈ S then
5: pdest, ilocal ← ChooseDelegateEdge(d(v))
6: async execute DelegateStep(v, l,S, ilocal) on pdest
7: else
8: if vnext ∈ D then
9: pdest, ilocal ← ChooseDelegateEdge(d(vnext))

10: async execute DelegateStep(vnext, l,S, ilocal) on pdest
11: else
12: async execute Step(vnext, l,S) on powner(vnext)
13: end if
14: end if
15: else
16: for each v ∈ S, increment count[v]
17: end if

Algorithm 4 ChooseDelegateEdge
Input: Degree of Delegated Vertex d
Output: Processor pdest, Local Index ilocal

1: iglobal ← index chosen uniformly at random from [0, d− 1]
2: ilocal ← ⌊iglobal/|P |⌋
3: pdest ← iglobal mod |P |
4: return pdest, ilocal

D. Applying RaNT-Graph to κ-Path Centrality

Our application of RaNT-Graph to κ-path centrality pro-
vides a method of sampling a random simple path by con-
tinually stepping to an unvisited vertex in a recursive manner
until a termination condition is met. Each processor executes
Algorithm 1, initiating the recursive path traversals which

call two major functions, Step and DelegatedStep shown in
Algorithms 2 and 3 respectively. To prevent revisiting a vertex,
each step taken requires the entire path be contained in the
YGM message.

The function Step is asynchronously called when a path is
starting at or is traversing to an undelegated vertex v and is
executed by powner(v). Recall, all undelegated vertices are
1D partitioned. Depending on rthresh, the subsequent vertex
in the path is either rejection sampled, or chosen from U(v).

DelegatedStep is asynchronously called when a path is start-
ing at or is traversing to a delegated vertex v and is executed
by the processor pdest storing the randomly chosen neighbor
u ∈ N (v) in its portion adjlocal(v) of adj(v). Therefore,
before stepping to a delegated vertex, the subsequent vertex
u in the path —located at adjlocal(v)[ilocal] on processor
pdest— must be chosen as done in the ChooseDelegateEdge
function. When eventually executed on pdest, if u is already
in the path, then we resample another neighbor of v and
asynchronously execute DelegationStep again, as done in lines
3-6 of Algorithm 3. In either function, a path halts when the
length of the path has reached it’s specific limit or it has no
unvisited neighbors to step to.

When the next vertex in a path is selected, it must be
determined whether it is delegated or not. Therefore, each
processor stores the entire set of delegated vertices D but not
their full adjacency lists. Additionally, to sample a random
index of a delegated vertex’s adjacency list, each processor
also stores the degree of each delegated vertex.

IV. EXPERIMENTS

A. Experimental Setup

All experiments were conducted on LLNL’s Catalyst cluster
where each compute node is equipped with dual Intel Xeon
E5-2695v2 processors totaling 24 cores and 128GB of DRAM.
The network uses an Infiniband QDR interconnect. Our im-
plementation utilizes YGM [23] and was written in C++.

B. Threshold Evaluations

As previously described, RaNT-Graph has two threshold
parameters rthresh and dthresh. For κ-path centrality, the value
of κ can be thought of as a threshold for the maximum length
of a random path. We evaluate altering each of these thresholds
to gain insight into what configuration yields the best perfor-
mance, measured by paths completed per second. All threshold
tests were run on 32 compute nodes i.e. 768 processors.
Assume a configuration of dthresh = 768, rthresh = 2, and
κ = 20 unless the value is being altered for evaluation reasons.

Figure 2a shows altering rthresh has little affect on perfor-
mance regardless of the parameter κ. The only notable dif-
ference is when rthresh equals one. When this is the case, no
rejection sampling is performed when sampling an undelegated
vertex’s neighbor (delegated vertices always rejection sample).
This is because the expected number of samples MS can never
be less than one. Since no rejection sampling is performed, the
set of unvisited neighbors U(v) of a vertex v is constructed in
O(d(v)) time at each step. However, an undelegated vertex’s

(a) (b) (c)

Fig. 2: Evaluation of the effect the parameters rthresh (a), dthresh (b), and κ (c) have on the performance of sampling paths utilizing
RaNT-Graph. All tests were conducted on 32 compute nodes (768 processors). All rthresh tests (a) were run on an R-MAT graph of scale
30. In (b), the x-axis shows varying values of dthresh proportional to the number of processors P = 768.

degree is bounded by dthresh, thus constructing U(v) takes at
most O(dthresh) time. This indicates why the performance of
RaNT-Graph is not greatly impacted by the value of rthresh.

The results of varying dthresh proportional to the number of
processors P is shown in Figure 2b. Values of dthresh ranging
from P/2 to 2P result in similar performance, but as dthresh
increases the performance is hindered. This is likely caused
by greater imbalances in computation and communication
inherent to larger dthresh values.

Lastly, adjusting the κ-path centrality parameter κ is shown
in Figure 2c and as expected, as κ increases the performance
decreases. The increased compute time associated with taking
more steps in a path, lowers the number of completed paths per
second. Additionally, when taking a step in a path, the entire
path must be stored in the message that is sent to the next
processor. Therefore, the amount of data sent greatly increases
as κ increases. This combination of increased compute and
communication degrades performance.

Fig. 3: Weak scaling of RaNT-Graph, 1D-Rej, and 1D-No-Rej based
on the number of completed paths per second. Starting with an R-
MAT graph of scale 26 for one compute node, up to a scale of 33 for
128 compute nodes. The number of paths to be sampled also scales.
For RaNT-Graph the paths to compute node ratio is 10M:1, whereas
for 1D-Rej, 1D-No-Rej, and RaNT-Graph-50K the ratio is 50K:1.

C. Weak Scaling

To evaluate our RaNT-Graph based approach, we compare
to two 1D partitioned implementations, one which uses re-

jection sampling (1D-Rej) and one which does not (1D-No-
Rej). We perform a weak scaling experiment which measures
the amount of paths sampled per second on R-MAT graphs
[8] starting at scale 26 and incrementally increasing up to
33. In many graph problems, such as triangle counting or k-
core decomposition, the amount of work required scales as
the size of the graph increases. When sampling a constant
number of paths, the work required does not change with the
size of the graph. Therefore, to scale the work as the number
of compute nodes increases, we employ a ratio of paths to
compute nodes. For RaNT-Graph this ratio is 10M:1, whereas
for 1D-Rej and 1D-No-Rej it is 50K:1. This difference is
due to the large amount of compute time it would require
to sample 10 million paths per compute node using either 1D
partitioned implementation. To ensure this ratio is not biased
towards RaNT-Graph, we also evaluate RaNT-Graph with a
ratio of 50K:1. The methods were configured using κ = 10,
rthresh = 2, and dthresh = |P |. Figure 3 shows the results
of the weak scaling experiment. It can be seen that RaNT-
Graph is able to sample multiple orders-of-magnitude more
paths than its 1D counterparts and scales with the number of
compute nodes.

TABLE I: Graphs used in strong scaling experiments.

Graph n m dmax T κ

Orkut [26] 3M 117M 33K 74M 18
LiveJournal [2] 4.85M 43M 20K 102M 18
Twitter [17] 42M 1.2B 3M 580M 21
Friendster [26] 66M 1.8B 5.2K 857M 22
web-cc12-hostgraph [18] 89M 1.9B 3M 1B 22
uk-2007-05 [5] 106M 3.3B 975K 1.2B 22

D. Strong Scaling

We provide multiple strong scaling experiments conducted
on large-scale real-world graphs of varying sizes. Table I
shows the size of each graph, along with their maximum
degree, dmax. It also shows the total number of paths sampled,
T , in each experiment as well as the value of κ used. These
values are derived by setting the parameter α to 0.2 in the
equations T = ⌊2κ2n1−2α lnn⌋ and κ = ⌊ln(n + m)⌋
presented in [1]. This configuration of RA-κpath proved to

45,341× 56,544× 675×

4× 8×

Fig. 4: Strong scaling of RaNT-Graph, 1D-Rej, and 1D-No-Rej on various real world graphs where T paths were sampled (see Table I).
*Due to the large compute time required, all values of 1D-Rej and 1D-No-Rej were estimated for the Twitter, web-cc12-hostgraph, and
uk-2007-05 networks. These values were estimated by timing the sampling of 1M paths and extrapolating this value based on the desired
amount of paths to be sampled T . The time to ingest and construct each graph is not included in the recorded times.

find vertices with high-betweenness centrality which is an
important feature of κ-path centrality.

Similar to the weak scaling experiment, we compare RaNT-
Graph to 1D-Rej and 1D-No-Rej with a configuration of
dthresh = |P | and rthresh = 2. The strong scaling results are
shown in Figure 4. Except for between 64 and 128 compute
nodes on the LiveJournal and Orkut graphs, RaNT-Graph
shows a decrease in compute time when strong scaling. Since
LiveJournal and Orkut are smaller graphs that require less
paths to be sampled, the communication cost outweighs the
advantage of distributing the work amongst 128 nodes.

Due to the large compute time required, the run times
of 1D-Rej and 1D-No-Rej were estimated for the Twitter,
uk-2007-05, and web-cc12-hostgraph networks (See caption
of Figure 4 for estimation details). Notice in Table I that
these networks all have extremely large maximum degrees.
This highlights the RaNT-Graph approach’s ability to spread
computation associated with high degree vertices amongst all
processors. Despite Friendster being a very large graph, all
three methods performed similarly. This reveals the benefit
of using RaNT-Graph is more dependent on a graph’s degree
distribution rather than its size.

V. RELATED WORK

To the best of our knowledge, this work is the first to
estimate κ-path centrality in distributed memory. KnightKing
is a distributed memory general random walk framework that
also takes advantage of rejection sampling to greatly reduce
sampling time [27]. The framework allows users to define
a walker’s state which can store application specific data
for the walker to use. A path’s previously visited vertices
can be stored in the walker’s state, meaning KnightKing
could be utilized to estimate κ-path centrality. However, the

framework employs 1D partitioning and would likely result in
similar compute and communication imbalances that decrease
performance as shown in our experiments.

In [14], an adaptive algorithm is proposed as an alternative
to RA-κpath. The algorithm reduces the number of sample
paths and samples them faster by computing two subsets
of the vertex set for each vertex. The first subset contains
vertices where a path’s source vertex can be sampled from.
The second subset defines the vertices which can be sampled
while sampling a path.

VI. CONCLUSION

Estimating κ-path centrality can require sampling large
amounts of paths when applied to large-scale graphs. We
introduce RaNT-Graph, a novel graph data structure optimized
for sampling massive amounts of simple paths. It combines
vertex delegation partitioning with rejection sampling to re-
duce compute, storage, and communication imbalances caused
by high-degree vertices. Our RaNT-Graph approach to es-
timating κ-path centrality shows good weak scaling on R-
MAT graphs of various scale. Additionally, we demonstrate
the strong scalability of RaNT-Graph on multiple large-scale
real-world graphs. When compared to the baseline 1D parti-
tioned implementations, our approach yields up to a 56, 544×
speedup.

In future work, we plan to extend RaNT-Graph to algorithms
which utilize random walks such as Personalized PageRank
[15] and Meta-Path [12]. In addition, enabling RaNT-Graph
to account for edge weights when sampling neighbors would
introduce new applications such as graph embedding. Further
optimizations of RaNT-Graph could be explored such as
attempting to make use of co-located edges to further reduce
communication.

ACKNOWLEDGEMENT

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Labo-
ratory under Contract DE-AC52-07NA27344 (LLNL- CONF-
854338). Funding from LLNL LDRD project 21-ERD-020
was used in this work.

REFERENCES

[1] T. Alahakoon, R. Tripathi, N. Kourtellis, R. Simha, and A. Iamnitchi,
“K-path centrality: A new centrality measure in social networks,” in
Proceedings of the 4th Workshop on Social Network Systems, ser. SNS
’11. New York, NY, USA: Association for Computing Machinery,
2011.

[2] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan, “Group
formation in large social networks: membership, growth, and evolution,”
in Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2006, pp. 44–54.

[3] A. Biswas and B. Biswas, “Community-based link prediction,” Multi-
media Tools and Applications, vol. 76, no. 18, pp. 18 619–18 639, Sep.
2017.

[4] J. Blackburn, R. Simha, N. Kourtellis, X. Zuo, M. Ripeanu, J. Skvoretz,
and A. Iamnitchi, “Branded with a scarlet ”C”: cheaters in a gaming
social network,” in Proceedings of the 21st international conference on
World Wide Web, ser. WWW ’12. New York, NY, USA: Association
for Computing Machinery, Apr. 2012, pp. 81–90.

[5] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propaga-
tion: A multiresolution coordinate-free ordering for compressing social
networks,” in Proceedings of the 20th international conference on World
Wide Web, 2011, pp. 587–596.

[6] U. Brandes, “A faster algorithm for betweenness centrality,” The Journal
of Mathematical Sociology, vol. 25, no. 2, pp. 163–177, 2001.

[7] H. Cao, Y. Wang, H. Wang, H. Lin, Z. Ma, W. Yin, and W. Chen,
“Scaling graph traversal to 281 trillion edges with 40 million cores,” in
Proceedings of the 27th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, ser. PPoPP ’22. New York, NY,
USA: Association for Computing Machinery, Mar. 2022, pp. 234–245.

[8] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model
for graph mining,” in Proceedings of the 2004 SIAM International
Conference on Data Mining. SIAM, 2004, pp. 442–446.

[9] P. De Meo, E. Ferrara, G. Fiumara, and A. Provetti, “Enhancing
community detection using a network weighting strategy,” Information
Sciences, vol. 222, pp. 648–668, Feb. 2013.

[10] ——, “Mixing local and global information for community detection
in large networks,” Journal of Computer and System Sciences, vol. 80,
no. 1, pp. 72–87, Feb. 2014.

[11] P. De Meo, E. Ferrara, G. Fiumara, and A. Ricciardello, “A novel mea-
sure of edge centrality in social networks,” Knowledge-Based Systems,
vol. 30, pp. 136–150, 2012.

[12] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable rep-
resentation learning for heterogeneous networks,” in Proceedings of the
23rd ACM SIGKDD international conference on knowledge discovery
and data mining, 2017, pp. 135–144.

[13] L. C. Freeman, “A set of measures of centrality based on betweenness,”
Sociometry, vol. 40, no. 1, pp. 35–41, 1977.

[14] M. Haghir Chehreghani, A. Bifet, and T. Abdessalem, “Adaptive al-
gorithms for estimating betweenness and k-path centralities,” in Pro-
ceedings of the 28th ACM International Conference on Information
and Knowledge Management, ser. CIKM ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 1231–1240.

[15] T. H. Haveliwala, “Topic-sensitive pagerank,” in Proceedings of the 11th
international conference on World Wide Web, 2002, pp. 517–526.

[16] N. Kourtellis, T. Alahakoon, R. Simha, A. Iamnitchi, and R. Tripathi,
“Identifying high betweenness centrality nodes in large social networks,”
Social Network Analysis and Mining, vol. 3, no. 4, pp. 899–914, jul
2012.

[17] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?” in Proceedings of the 19th international
conference on World wide web, 2010, pp. 591–600.

[18] R. Meusel, S. Vigna, O. Lehmberg, and C. Bizer, “Graph structure in
the web—revisited: a trick of the heavy tail,” in Proceedings of the 23rd
international conference on World Wide Web, 2014, pp. 427–432.

[19] B. A. Page and P. M. Kogge, “Scalability of Hybrid SpMV with
Hypergraph Partitioning and Vertex Delegation for Communication
Avoidance,” International Conference on High Performance Computing
& Simulation (HPCS 2020), Mar. 2021.

[20] Y. Pan, R. Pearce, and J. D. Owens, “Scalable Breadth-First Search on
a GPU Cluster,” in 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), May 2018, pp. 1090–1101, iSSN:
1530-2075.

[21] S. Pandey, L. Li, A. Hoisie, X. S. Li, and H. Liu, “C-saw: A framework
for graph sampling and random walk on gpus,” in SC20: International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2020, pp. 1–15.

[22] R. Pearce, M. Gokhale, and N. M. Amato, “Faster Parallel Traversal
of Scale Free Graphs at Extreme Scale with Vertex Delegates,” in SC
’14: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, Nov. 2014, pp. 549–559,
iSSN: 2167-4337.

[23] B. Priest, T. Steil, G. Sanders, and R. Pearce, “You’ve got mail (ygm):
Building missing asynchronous communication primitives,” in 2019
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), 2019, pp. 221–230.

[24] T. Reza, C. Klymko, M. Ripeanu, G. Sanders, and R. Pearce, “Towards
Practical and Robust Labeled Pattern Matching in Trillion-Edge Graphs,”
in 2017 IEEE International Conference on Cluster Computing (CLUS-
TER), Sep. 2017, pp. 1–12, iSSN: 2168-9253.

[25] S. Sun, Y. Chen, S. Lu, B. He, and Y. Li, “Thunderrw: An in-memory
graph random walk engine,” Proc. VLDB Endow., vol. 14, no. 11, p.
1992–2005, jul 2021.

[26] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth. corr abs/1205.6233 (2012),” arXiv preprint
arXiv:1205.6233, 2012.

[27] K. Yang, M. Zhang, K. Chen, X. Ma, Y. Bai, and Y. Jiang, “Knightking:
A fast distributed graph random walk engine,” in Proceedings of the
27th ACM Symposium on Operating Systems Principles, ser. SOSP ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
524–537.

[28] J. Zeng and H. Yu, “A Distributed Infomap Algorithm for Scalable
and High-Quality Community Detection,” in Proceedings of the 47th
International Conference on Parallel Processing, ser. ICPP ’18. New
York, NY, USA: Association for Computing Machinery, Aug. 2018, pp.
1–11.

[29] ——, “A Scalable Distributed Louvain Algorithm for Large-Scale Graph
Community Detection,” in 2018 IEEE International Conference on
Cluster Computing (CLUSTER), Sep. 2018, pp. 268–278, iSSN: 2168-
9253.

