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Abstract—FPGAs often cannot implement machine learning
inference with high accuracy models due to significant storage
and computing requirements. The corresponding hardware ac-
celerators of such models are large designs which cannot be
deployed on a single platform. In this research, we implement
ResNet-50 with 4 bit precision for weights and 5 bit precision
for activations, which has a good trade-off between precision
and accuracy. We train ResNet-50 using the quantization-aware
training library Brevitas and build a hardware accelerator with
the FINN framework from AMD. We map the result to three
FPGAs that communicate directly with one another over the
network via the User Datagram Protocol (UDP). The multi-FPGA
implementation is compared to a single FPGA ResNet-50 design
with lower precision of 1 bit weights and 2 bit activations. While
the latter can fit on a single FPGA, the former pays for higher
accuracy with a three times increase in the required number
of BRAM tiles and can only be deployed on multiple FPGAs.
We show the difference in accuracy, resource utilization, and
throughput for the designs deployed on AMD/Xilinx Alveo U280
data center accelerator cards available in the Open Cloud Testbed
(OCT). The final multi-FPGA custom accelerator design for
ResNet-50 achieves a 5.3% increase in accuracy and a throughput
of 162.3 images/s at a frequency of 200 MHz, comparable to
the single FPGA lower precision implementation’s throughput of
176.1 images/s at 160 MHz. We further explore a more efficient
usage of the available memory on the target platform. By making
use of the available Ultra RAM, we are able to fit the accelerator
with higher precision on one U280 and achieve a throughput of
165 images/s.

Index Terms—FPGA, Machine Learning, FINN, ResNet-50,
Quantization

I. INTRODUCTION

The architectures of Machine Learning (ML) models evolve
at a fast pace and their complexity grows significantly with
their increase in performance. ML is applied in numerous
applications but its deployment on edge devices and in data
centers is becoming gradually more difficult. Hardware accel-
erators need to be adapted frequently to changes in the models
and at the same time to be implementable on the available

hardware or cloud structure. For this reason, researchers try
to find the best balance between accuracy, throughput, power
consumption, and hardware footprint based on the application
requirements.

FPGAs represent a low power, flexible platform on which
low latency and high throughput accelerators can be imple-
mented [1], [2]. However, efficient hardware accelerators for
ML, and specifically Deep Neural Networks (DNN), are feasi-
ble only through software-hardware co-design. High accuracy
can be obtained in software using floating point precision,
however floating point precision requires a large amount of
hardware computational resources and is not usually employed
on FPGA platforms. The accelerator design is constrained by
the available resources on the target platform and the through-
put can only be increased by reducing the computational
complexity. Quantization is a popular technique [3], [4], [5]
for reducing the precision and the size of the neural network,
thus reducing the computational complexity and the number
of resources required.

In this research, we implement a quantized ResNet-50 [6]
on multiple network-connected FPGAs. This project builds on
top of existing open-source tools, namely FINN [7], Elastic-
DF [8] and the AMD/Xilinx VNx UDP/IP stack [9]. ResNet-
50 is one of the examples provided with FINN and is also used
by others including the Elastic-DF project to illustrate mapping
machine learning to multiple FPGAs. In the implementations
with FINN and Elastic-DF, ResNet-50 is quantized to 1 bit
weights and 2 bit activations. This results in a design size that
is small enough to fit on a single AMD/Xilinx Alveo U280,
our target accelerator card, and also has a relatively low top-
1 accuracy of 67.97%. In contrast, we implement ResNet-50
with 4 bit weights and 5 bit activations. This results in a larger
model that requires three Alveo U280s for implementation and
also delivers a higher top-1 accuracy of 73.26% which gets
closer to a realistic target for image classification.



Our implementation makes use of the Open Cloud
Testbed [10], which houses multiple AMD/Xilinx Alveo
U280s that are available for public use. Each Alveo U280
is connected directly to a computer host, as well as to a data
switch via two 100 Gbps connections per FPGA. The ResNet-
50 model is mapped to three Alveo U280s in the flow. The
FPGAs are connected using the network infrastructure of the
VNx UDP/IP stack provided by AMD/Xilinx which enables
direct communication between the FPGAs via the network
switch.

In our implementation, the images to be classified are
transferred to the first FPGA from its local host, the processing
is done on all three nodes and the result is returned to the host
from the first node. This is one of two possible configurations
and we refer to this as the loop configuration; the other allows
the result to be produced on a different FPGA from the first
one; we refer to this as the chain configuration.

Both loop and chain configurations illustrate processing in
the network. The amount of data to transmit across the network
using these approaches is less than if the input data was
transmitted to each FPGA separately for processing. This is a
consequence of implementing a dataflow architecture for the
accelerator.

We differentiate throughout the paper between DataFlow
Architectures (DFA) and Matrix of Processing Elements
(MPE) architectures. DFAs are fully customized for the ML
model, while MPEs implement a general parallel architecture
which can accommodate different models but with limited
flexibility in terms of, for example, number of processing
elements and interconnection patterns.

In the DFA model, as the data to be transmitted between
FPGAs is represented by intermediate values in the flow, the
result of the last layer computed on one FPGA serves as input
to the next layer in the network residing on the next FPGA.
Furthermore, the direct FPGA-to-FPGA communication elim-
inates any overhead that might be incurred when host-to-host
communication is involved as data transfer to/from the host
and then between hosts is much slower.

The contributions of this paper are:
• Comparison between quantized ResNet-50 with 1 bit

weights and 2 bit activations (ResNet-50 W1A2) and
ResNet-50 with 4 bit weights and 5 bit activations
(ResNet-50 W4A5) in terms of accuracy as well as
the resource utilization for their corresponding custom
FPGA-based accelerators.

• Multi-FPGA implementation of quantized ResNet-50
model with 4 bit weights and 5 bit activations (ResNet-
50 W4A5). The design is generated using the FINN
framework and the model is partitioned using the Elastic-
DF partitioner. The final custom accelerator is deployed
on three network-connected AMD/Xilinx Alveo U280
data center accelerator cards in the Open Cloud Testbed.

• Comparison between FPGA-based custom designs gener-
ated through the FINN framework for ResNet-50 W1A2
and ResNet-50 W4A5 in terms of throughput. ResNet-
50 W4A5 achieves a comparable throughput compared to

ResNet-50 W1A2 which fits on one single FPGA while
the former requires three FPGAs.

• Exploration of a more efficient usage of the available
memory on the target platform. By making use of the
available Ultra RAM blocks on Alveo U280, the resulting
ResNet-50 W4A5 accelerator is able to fit on a single
FPGA. The design is compared to the original ResNet-
50 W4A5 multi-FPGA accelerator with BRAM storage
of weights in terms of resource utilization and throughput.

The rest of this paper is organized as follows: Sec. II goes
over the main background specifics of the tools used and
related work. Sec. III focuses on the multi-FPGA ResNet-
50 accelerator implementation. Sec. IV describes experiments
and results, Sec. V presents lessons learned and Sec. VI draws
conclusions.

II. BACKGROUND

A. Open Cloud Testbed (OCT)

OCT [11], [12] is a research platform that offers FPGA-
enhanced nodes to users via the CloudLab framework. It
provides the ability to perform experiments on emerging
cloud services and develop cloud-based applications that can
leverage the programmable logic resources offered by FPGAs.
CloudLab nodes are bare metal, meaning they are provided
without an operating system or any pre-installed software or
tools [13]. This provides researchers with a blank slate to
configure the system as desired. The flexibility offered by OCT
enables us to establish repeatable experimental conditions, as
we can install all the required runtime tools, components, and
dependencies necessary for executing our machine learning
accelerators in hardware.

OCT has AMD/Xilinx Alveo U280 accelerator cards that
are directly connected to a 100 GbE network via a 100
GbE data center switch. These network ports are exposed
to FPGA users. This enables direct FPGA-to-FPGA commu-
nication by eliminating the need for processor involvement,
thus significantly reducing the latency associated with data
transfer and resulting in faster processing times. Additionally,
it allows distributing a complex machine learning acceler-
ator across multiple FPGAs allowing direct communication
between them. In addition to the network connectivity, the
U280s are also connected to a host processor via PCIe. This
connection is used to transfer images and weights from the
host to the FPGA and to retrieve inference results from the
FPGA back to the host by using input and output DMAs
(IDMA and ODMA) implemented on the FPGA.

B. FINN

Deep Neural Network inference on FPGAs can be explored
using FINN [7], an open-source end-to-end framework that
allows building custom accelerators based on a given network
topology. The FINN project focuses on Quantized Neural
Networks (QNN) and includes the PyTorch library Brevi-
tas [14] for quantization and quantization-aware training of
neural networks. The network is exported from Brevitas in the



Open Neural Network Exchange (ONNX) format, a standard
that enables interoperability between machine learning tools.

The end goal of FINN is to generate a streaming dataflow
hardware accelerator (DFA) for the input quantized ONNX
model; however, the framework is highly modular and consists
of multiple steps which produce intermediate results. Hence,
the flow can be stopped at different stages if intermediate
results are needed for a different flow or further analysis.
The Brevitas training and export of the model is followed by
network preparation which is in turn followed by the hardware
build.

The network preparation stage has multiple purposes and
sub-steps. One of them is the streamlining step which is in
charge of moving operations around and collapsing them into
the corresponding nodes and also absorbing floating point
scaling factors into integer thresholds [15]. During the same
preparation stage, the layers of the model are converted to
High Level Synthesis (HLS) layers based on the HLS code
library for FINN. One important concept of FINN is folding,
which allows changing the number of Processing Elements
(PEs) and their SIMD lanes to adjust the throughput and the
footprint size of the hardware accelerator. The hardware build
stage takes care of generating the bitfile and all the steps that
come before that, including IP generation and floorplanning.
This is a short overview of FINN; we refer the reader to [7],
[16] for more details.

C. Elastic-DF

Elastic-DF is a tool for automatic partitioning and resource
balancing for dataflow DNN inference accelerators [8]. The
partitioner is based on an Integer Linear Program (ILP) solver
and is integrated into FINN as an analysis pass. Based on the
resource estimation for each layer and the input constraints
(such as resource limits), Elastic-DF aims to find the opti-
mal solution of layer placement across multiple Super Logic
Regions (SLRs) for a multi-die FPGA and across multiple
FPGAs. Based on the resulting floorplan, FINN splits the
ONNX model into partitions where each partition contains a
sequence of layers that must be placed on the same SLR. It is
important for each partition to fit on one single SLR since die
crossings can lead to large propagation delays and therefore
to timing closure issues.

Alonso et al. [8] present, along with the partitioner and
resource balancer, VNx which is the IP core used for direct
FPGA-to-FPGA communication and is covered in Sec. II-D.
They demonstrate their tools by deploying MobileNetV1 with
4 bit weights and 4 bit activations and ResNet-50 with 1 bit
weights and 2 bit activations on multiple FPGAs.

D. VNx UDP/IP Stack

The VNx UDP/IP stack [9] consists of hardware modules
that perform the necessary network and transport layer func-
tions to help send and receive data packets over a network.
These modules are designed using hardware description lan-
guages and are synthesized to run on an FPGA device such as
the Alveo U280. UDP is an unreliable protocol, meaning that

it does not provide any guarantees for the delivery of packets,
nor does it check for errors in transmission. However, since
the FPGAs used in this work are connected to the same switch,
there is little risk of packet loss or high latency because the
switch acts as a direct link between the FPGAs without the
need for additional routing or network hops. As a result, the
use of UDP in this context is appropriate, since the reliability
and error checking features of other transport protocols, such
as TCP, are not necessary and would only add overhead to the
communication process.

Applications running on the FPGA use sockets to send
and receive data which enable them to establish connections
with other applications on different FPGAs or hosts. The
VNx stack implements Address Resolution Protocol (ARP)
and UDP tables which can be accessed from a host processor
via AXI Lite control interfaces. The UDP table manages the
state of UDP sockets for sending and receiving data, while the
ARP table maps IP addresses to MAC addresses for FPGAs
to communicate with each other on the local network. In the
context of this work, the machine learning accelerator is the
application that we split across multiple FPGAs. Integrating
the VNx stack makes it possible to partition a large machine
learning model that would not fit on a single FPGA across
multiple FPGAs and enable smooth communication among
them.

E. Related Work

Multi-FPGA acceleration of DNNs has been previously
explored and there is a wide variety of tools and target
applications which have been implemented.

Zhang et al. [17] target ResNet-152 on four Virtex Ultra-
scale FPGAs; however, they transfer data from host to host as
opposed to our work where we use direct FPGA-to-FPGA
communication. The hosts are connected through 10 GbE
Ethernet switches while the FPGAs are PCIe attached.

Fukushima et al. [18] deploy 8-bit quantized ResNet-50 on
four MKUBOS boards which are based on AMD/Xilinx Zynq
UltraScale+ devices and obtain a throughput of 75.1 images/s.
The 8-bit quantization of weights leads to a top-1 accuracy
of 74.2%, which is 1% higher than the accuracy obtained by
us with 4-bit weights and 5-bit activations. This highlights
the fact that comparable accuracy can be achieved with low
bit width quantization and this can be a convenient trade-off
that results in lower storage demand and smaller accelerated
computations. Their communication uses the AMD/Xilinx
Aurora IP and each serial link between devices has a bit
rate of 8.5 Gbps. The Aurora communication protocol is also
used by [19] to interconnect their ZCU102 FPGAs. Jiang et
al. [19] propose a framework for accelerating DNN inference
across multi-FPGAs; however, they implement a Matrix of
Processing Elements (MPE) type of architecture, while we
focus on streaming dataflow.

Tarafdar et al. [20] also use ResNet-50 to showcase their
AIgean framework for ML deployment on heterogeneous
clusters. They deploy the model with 16-bit weights on 10 and
12 AMD/Xilinx ZU19EG FPGAs targeting high throughput.
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Fig. 1. Multi-FPGA ResNet-50 Accelerator Configurations. (a) Loop config-
uration: The input images are sent to the first FPGA, the processing is done
on all nodes and the result is returned through the first FPGA. (b) Chain
configuration: The input images are sent to the first FPGA, the processing is
done on all nodes and the result is returned to the host of the last FPGA.

TABLE I
COMPARISON BETWEEN RESNET-50 W1A2 AND RESNET-50 W4A5

Model Quantization Dataset Top-1 Accuracy
ResNet-50 W1A2 ImageNet-1K 67.97%
ResNet-50 W4A5 ImageNet-1K 73.26%

They achieve 400 and 660 images/s respectively, by unrolling
the multiplications in the convolutional layers at the cost
of high resource utilization. In this work, the FPGAs are
connected through 100 Gbps Ethernet switches and the UDP
communication protocol.

III. MULTI-FPGA RESNET-50 ACCELERATOR

A. Quantization-Aware Training

Using quantization-aware training, we quantize the weights
and activations of ResNet-50 [6]. In contrast to post-training
quantization, quantization-aware training better preserves the
accuracy by simulating the quantization loss and computing
the scale factors during the fine-tuning stage of the training
process. In post-training quantization, these scale factors are
computed after training, which generally leads to a higher drop
in accuracy. We chose the bit-width in such a way that the
resulting model would have a higher accuracy than ResNet-
50 W1A2 and that it would also allow us to demonstrate the
multi-FPGA partitioning of an accelerator design that cannot
fit on a single FPGA.

We use Brevitas [14], a quantization-aware training library,
to train ResNet-50 on the ImageNet-1K [21] dataset, and we
reduce the bit-width of weights to 4 bits and the bit-width of
activations to 5 bits. We keep the first and the last layer weights
at 8 bits to preserve accuracy. We initialize the weights of our
quantized model from a pre-trained ResNet-50 model. We use
Stochastic Gradient Descent (SGD) with a batch size of 64 for
each of the four training GPUs. The learning rate starts from
0.001 and is divided by 10 for every 30 epochs; the model is
trained for 90 epochs. We also use a weight decay of 0.00005
and a momentum of 0.875. After quantization-aware training,
we export the model weights to integer representation with
scale factors in ONNX format.

B. Hardware Implementation

The next implementation step consists of processing the
ResNet-50 W4A5 ONNX model with the FINN framework.
We go through the same network preparation steps and we
keep the same folding configuration as the one used for
ResNet-50 W1A2 in [22] because we want to fairly compare
the throughput between the two implementations.

We analyze the FPGA resource estimation for ResNet-
50 W4A5, and deduce that, with the same folding config-
uration as ResNet-50 W1A2, it is not possible to fit its
corresponding hardware accelerator on a single FPGA. Hence,
we use the Elastic-DF analysis pass integrated with FINN to
find the optimal placement of layers on the available SLRs.
This optimal placement across multiple multi-die FPGAs and
across their SLRs later instructs FINN how to split the ONNX
model into partitions. A computing kernel is generated for
each partition (a contiguous sequence of layers which reside
on the same SLR) and the kernels are connected through
AXI Stream interfaces. Alonso et al. [8] refer to this type of
design as an explicit dataflow design, whereas an embedded
dataflow has a single kernel that contains the whole design.
We split the final set of kernels across three FPGAs based on
their resource utilization making sure that the total BRAM
utilization on each device is under 80% as Xilinx advises
to exclude the possibility of routing congestion. The network
layer adds logic overhead; the resource utilization breakdown
can be seen in [8]. We use the VNx UDP stack which is much
more lightweight than the TCP stack.

Figure 1 shows the setup of the network-connected FPGAs
and how the ResNet-50 accelerator kernels fit into the infras-
tructure. There are two configurations which we investigate:
(a) Loop configuration and (b) Chain configuration. In [8],
from a model parallelism point of view of a multi-FPGA
DFA implementation, the chain configuration is referred to as
Hardware Model-Parallel (HWMP) and the loop configuration
is referred to as Transparent Model-Parallel (TMP).

In the loop configuration, Figure 1 (a), the batch of input
images to be classified are transferred from the host on the first
Alveo U280 through the IDMA and the result is returned by
the same node to the host through the ODMA. The difference
in the chain configuration, Figure 1 (b), is that the result is
returned to the host of the last FPGA. Note that, as shown in



Fig. 2. Sizes of the data transfers for one inference of the multi-FPGA ResNet-50 accelerator

TABLE II
COMPARISON BETWEEN THE RESOURCE UTILIZATION OF

RESNET-50 W1A2 AND RESNET-50 W4A5 FPGA-BASED
ACCELERATORS

Design LUT BRAM tile URAM
(36 Kb) (288 Kb)

Alveo U280 1903200 2016 960
(available resources)
ResNet-50 W1A2 285520 1392.5 20
Utilization (%) 15% 69.07% 2.08%
ResNet-50 W4A5 830906 4320 40
Utilization (%) 43% 214% 4.16%

TABLE III
COMPARISON BETWEEN THE THROUGHPUT OF RESNET-50 W1A2 AND

RESNET-50 W4A5 FPGA-BASED ACCELERATORS

Model Quantization No. of FPGAs Frequency Throughput
[MHz] [images/s]

ResNet-50 W1A2 1 160 176.10
ResNet-50 W4A5 3 200 162.32

Figure 1 (a), only the first host on the first node is involved,
whereas in Figure 1 (b), there is communication with the hosts
on both the first and the last accelerator card. The other hosts
of the intermediate nodes in each topology are not involved,
and there is no data transfer needed between the hosts and the
reconfigurable fabric on these nodes. All intermediate results
are transferred between nodes in the FPGA cluster through
direct FPGA-to-FPGA communication. An advantage of the
loop configuration is that from the software perspective, it
looks like a single FPGA accelerator.

A user may find it useful for the output to be returned to the
same host and the processing to be done on the FPGA cluster;
however, it may also be useful to feed the images to one node
and to return the classification label(s) from a different node.
The configuration choice depends on the application and on
the node where the user would like to receive the output. If
there were additional hardware connected to, for example, the
last FPGA in the pipeline or if its host needs the classification
results for further processing, the chain configuration would
be preferred.

IV. EXPERIMENTS AND RESULTS

The experiments have been done using Vitis 2020.1 and
FINN v0.7, and the tests have been run on the Alveo U280 data
center accelerator cards hosted in Open Cloud Testbed. The
hardware accelerator for ResNet-50 W1A2 has been generated
from the pre-trained model provided by FINN examples [22].
ResNet-50 W4A5 has been trained with Brevitas from scratch

on the ImageNet-1K dataset. Both training and inference
images are RGB images resized to 224x224x3 pixels.

In the ResNet-50 architecture, the last fully-connected layer
is the layer with the highest storage demand. Therefore, it is
more convenient to store the weights externally and then feed
them to the accelerator than to store them on chip. The external
weight file is fed from the host to the first FPGA, as well as
the input batch of images to be classified, but through separate
IDMAs.

Table I shows the accuracy comparison between ResNet-
50 W1A2 and ResNet-50 W4A5, and Table II presents the
FPGA resource demand of the accelerator designs. It can be
observed that for an around 5% increase in accuracy, the
latter model needs triple the number of LUTs and BRAMs.
However, the most critical resource is the BRAM tile. The
number of used LUTs is notably below the number of available
LUTs, while the required number of BRAM tiles significantly
exceeds the available resources on one Alveo U280. It is also
recommended by Xilinx to keep the total BRAM utilization
under 80% because exceeding this limit might lead to routing
congestion and inability to meet timing. This makes it impos-
sible to fit the accelerator for ResNet-50 W4A5 on one single
FPGA and the only solution in this case is to partition the
dataflow accelerator and deploy it on three FPGAs.

Table III compares the two ResNet-50 designs with different
precisions in terms of throughput. ResNet-50 W4A5 achieves
a comparable throughput compared to ResNet-50 W1A2 even
though the former is split across three different FPGAs. The
single FPGA implementation runs at a frequency of 160 MHz,
while the multi-FPGA accelerator reaches 200 MHz. The
slower clock on the single FPGA is likely due to routing
complexity. There is more flexibility for routing on the three
FPGA design due to a lower usage of resources.

In Figure 2 we show the sizes of the data transfers between
the nodes for one inference. The input consists of one input
image and the external weights. The output consists of the
top 5 labels. It can be observed that the intermediate results
have a much lower size than the input. If copies of the input
frame or external weights would need to be sent to each
node for parallel processing, as in the case of a split MPE
type of accelerator, that would increase the latency. In this
case, for a DFA, only the intermediate results are transferred
between the FPGAs. Furthermore, the direct FPGA-to-FPGA
communication and the streaming dataflow architecture of the
accelerator enable fast data transfers between nodes without
the involvement of the host. Communication through the host
would ultimately affect the throughput since it can be signifi-
cantly slower. The main target and advantage of DFAs is high



TABLE IV
COMPARISON BETWEEN DIFFERENT FPGA-BASED IMPLEMENTATIONS OF RESNET-50 W4A5

Implementation LUT BRAM tile (36 Kb) URAM (288 Kb) Number of FPGAs Frequency Throughput
[MHz] [images/s]

Alveo U280 (available resources) 1903200 2016 960 1 - -
Predominant BRAM storage of weights 830906 4320 40 3 200 162.32
Utilization % (with respect to one U280) 43% 214% 4.16% - - -
Utilization % (with respect to three U280) 14.55% 71.42% 1.3% - - -
Predominant URAM storage of weights 561797 981.5 587 1 150 165.09
Utilization % (with respect to one U280) 29.51% 48.68% 61.14% - -

throughput compared to MPE architectures. A multi-FPGA
implementation of the architecture with directly connected
FPGAs is more efficient from a throughput point of view since
it significantly reduces the latency for communication between
nodes.

The baseline FINN configuration for ResNet-50 W1A2 in
[22] includes, besides the folding factors, the type of RAM
the weights of the model should be stored in. Because we
work with Alveo U280 which has an Ultrascale architecture,
we also explore a more memory-efficient implementation. The
initial requirement is for the weights of ResNet-50 W4A5 to
be stored in Block RAM, however, as shown in Table II,
the BRAM tiles represent the most critical FPGA resource.
The other resources are underutilized; thus we chose to take
advantage of the available Ultra RAM (URAM) and to try
to rescale the size of the whole accelerator to fit on a
single FPGA. This means that part of the storage that was
previously implemented through BRAM is now implemented
with URAM; we do not change the folding configuration or
any other parameters. Table IV shows that by storing the
weights of the fully-connected layers in URAM, the number of
BRAM tiles required decreases by a factor of four. The URAM
utilization increases by 14x, but is still below the number of
available tiles on the accelerator card. Ultimately, the entire
ResNet-50 W4A5 design fits on one FPGA and the throughput
is maintained even though the maximum frequency achieved
is lower.

V. DISCUSSION

The main purpose of FPGAs in the cloud is to accelerate
different time-consuming tasks as they can achieve better per-
formance for lower power consumption compared to CPUs and
GPUs [23]. In general, only critical parts of applications are
offloaded onto the FPGAs since they have limited resources
which are often not enough to host an entire cloud applica-
tion. Network-connected FPGA clusters support deployment
of larger designs. The direct FPGA-to-FPGA communication
through 100 Gb Ethernet networking and the UDP/IP protocol
also provide a faster solution in comparison to host-to-host
communication. In the machine learning context, accurate
models demand a significant amount of storage and they also
require a large amount of computation. Even when using
aggressive quantization and quantization-aware training to
reduce the size of the accelerator, the final hardware design
might still be too large to fit on a single FPGA; an example
of this being ResNet-50 W4A5 implemented in this work.

This work focuses on dataflow inference accelerators that
target high throughput. DFAs are architectures customized for
a specific model where each layer has resources allocated as
needed, compared to MPEs which are more generic having
a fixed set of processing elements. The generality of MPEs
comes with several drawbacks such as limited flexibility
and intensive communication between on-chip and off-chip
memory as they need to fetch weights and activations from
the external memory when layers are scheduled to be executed
on the available processing units. DFAs minimize the amount
of data transfers between on-chip and off-chip memories by
storing the parameters of most layers on-chip, hence reducing
latency and power consumption. While MPEs can pipeline
computations on a fixed set of processing elements, DFAs need
to allocate resources for each layer, hence their challenge is
frequently that resources are limited. In this situation, being
able to partition a design onto multiple network-connected
FPGAs allows for the accommodation of larger ML dataflow
accelerators with higher accuracy and higher throughput.

ResNet-50 represents a basic architecture that has enabled
accurate image classification. Recently, other ML models have
taken the lead. After all, the accuracy of ResNet50 W4A5
implemented in this work (73.26%) is much lower than the
state-of-the-art (around 90%). Currently, on the ImageNet-
1K dataset, the highest accuracy is achieved by vision trans-
formers [24]; [25] provides an example of a transformer
acceleration framework. However, transformers demand sub-
stantially more storage. The vision transformer used in [24]
has 1.88 billion parameters, while ResNet-50 has 23 million
parameters. Even if we stick with a CNN architecture, the
most accurate model has almost 100x more parameters (2158
million parameters). In the end, a designer needs to determine
the best trade-off between accuracy and the feasibility of
deploying the corresponding accelerator on FPGAs. Network-
connected FPGAs give a designer more options.

VI. CONCLUSION

We showcase the implementation of a multi-FPGA dataflow
accelerator for a higher precision version of ResNet-50 which
cannot be deployed on a single FPGA. Network-connected
FPGAs enlarge the design space and options for implementa-
tion. In this research, ResNet-50 is trained and quantized with
4 bit weights and 5 bit activations. A custom accelerator is
generated using the FINN framework and is partitioned using
the Elastic-DF partitioner and resource balancer. The design



is deployed in the Open Cloud Testbed on three network-
connected Alveo U280 data center accelerator cards which
communicate through the VNx UDP/IP stack and 100 Gbps
Ethernet. We compare this work in terms of accuracy, resource
utilization and throughput with the accelerator of ResNet-
50 W1A2 which is generated and deployed using the same
tools. An alternative implementation is explored where we
make use of the available Ultra RAM and we reduce the size
of the accelerator, the final design being able to fit on one
FPGA.

In the future, we plan to explore different ML architectures
that achieve or are close to state-of-the-art accuracy on image
classification tasks, such as vision transformers. We aim to
implement and optimize accelerators for such models which
can successfully be implemented on FPGA clusters. Moreover,
we intend to extend FINN to support 3D CNNs for video
classification and investigate how the performance of DFA
architectures compares to MPE accelerators for such appli-
cations.
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